[en] Metallo-beta-lactamase (MBL)-producing bacteria are emerging worldwide and represent a formidable threat to the efficacy of relevant beta-lactams, including carbapenems, expanded-spectrum cephalosporins, and beta-lactamase inactivator/beta-lactam combinations. VIM-2 is currently the most widespread MBL and represents a primary target for MBL inhibitor research, the clinical need for which is expected to further increase in the future. Using a saturation mutagenesis approach, we probed the importance of four residues (Phe-61, Ala-64, Tyr-67, and Trp-87) located close to the VIM-2 active site and putatively relevant to the enzyme activity based on structural knowledge of the enzyme and on structure-activity relationships of the subclass B1 MBLs. The ampicillin MIC values shown by the various mutants were affected very differently depending on the randomized amino acid position. Position 64 appeared to be rather tolerant to substitution, and kinetic studies showed that the A64W mutation did not significantly affect substrate hydrolysis or binding, representing an important difference from IMP-type enzymes. Phe-61 and Tyr-67 could be replaced with several amino acids without the ampicillin MIC being significantly affected, but in contrast, Trp-87 was found to be critical for ampicillin resistance. Further kinetic and biochemical analyses of W87A and W87F variants showed that this residue is apparently important for the structure and proper folding of the enzyme but, surprisingly, not for its catalytic activity. These data support the critical role of residue 87 in the stability and folding of VIM-2 and might have strong implications for MBL inhibitor design, as this residue would represent an ideal target for interaction with small molecules.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Borgianni, Luisa; Università di Siena > Dipartimento di Biologia Molecolare > Laboratorio di Fisiologia e Biotecnologia dei Microrganismi
Vandenameele, Julie ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines
Matagne, André ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines
Bini, Luca; Università di Siena > Dipartimento di Biologia Molecolare > Laboratorio di Fisiologia e Biotecnologia dei Microrganismi
Bonomo, Robert A; Louis Stokes Cleveland > Department of Veterans Affairs Medical Center
Frère, Jean-Marie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Rossolini, Gian Maria; Università di Siena > Dipartimento di Biologia Molecolare > Laboratorio di Fisiologia e Biotecnologia dei Microrganismi
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Language :
English
Title :
Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding.
Publication date :
2010
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology (ASM), Washington, United States - District of Columbia
Bonomo, R. A., and D. Szabo. 2006. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 43:S49-S56.
Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 7th ed. Approved standard. CLSI document M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
Concha, N. O., C. A. Janson, P. Rowling, S. Pearson, C. A. Cheever, B. P. Clarke, C. Lewis, M. Galleni, J. M. Frere, D. J. Payne, J. H. Bateson, and S. S. Abdel-Meguid. 2000. Crystal structure of the IMP-1 metallo β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39:4288-4298.
Docquier, J. D., J. Lamotte-Brasseur, M. Galleni, G. Amicosante, J. M. Frere, and G. M. Rossolini. 2003. On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J. Antimicrob. Chemother. 51:257-266.
Dumoulin, M., K. Conrath, A. Van Meirhaeghe, F. Meersman, K. Heremans, L. G. Frenken, S. Muyldermans, L. Wyns, and A. Matagne. 2002. Single-domain antibody fragments with high conformational stability. Protein Sci. 11:500-515. (Pubitemid 34171255)
El Hajjaji, H., M. Dumoulin, A. Matagne, D. Colau, G. Roos, J. Messens, and J. F. Collet. 2009. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2. J. Mol. Biol. 386:60-71.
Galleni, M., J. Lamotte-Brasseur, G. M. Rossolini, J. Spencer, O. Dideberg, and J. M. Frere. 2001. Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45:660-663.
Garcia-Saez, I., J. D. Docquier, G. M. Rossolini, and O. Dideberg. 2008. The three-dimensional structure of VIM-2, a Zn-β-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J. Mol. Biol. 375:604-611.
Hujer, A. M., C. R. Bethel, and R. A. Bonomo. 2004. Antibody mapping of the linear epitopes of CMY-2 and SHV-1 β-lactamases. Antimicrob. Agents Chemother. 48:3980-3988.
Krissinel, E., and K. Henrick. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774-797.
Laraki, N., N. Franceschini, G. M. Rossolini, P. Santucci, C. Meunier, E. de Pauw, G. Amicosante, J. M. Frere, and M. Galleni. 1999. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43:902-906. (Pubitemid 29165755)
Lejeune, A., R. H. Pain, P. Charlier, J. M. Frere, and A. Matagne. 2008. TEM-1 β-lactamase folds in a nonhierarchical manner with transient nonnative interactions involving the C-terminal region. Biochemistry 47:1186-1193.
Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔC T method. Methods 25:402-408.
Lovato, L., R. Cianti, B. Gini, S. Marconi, L. Bianchi, A. Armini, E. Anghileri, F. Locatelli, F. Paoletti, D. Franciotta, L. Bini, and B. Bonetti. 2008. Transketolase and CNPase I are specifically recognized by IgG autoantibodies in multiple sclerosis patients. Mol. Cell. Proteomics 7:2337-2349.
Materon, I. C., and T. Palzkill. 2001. Identification of residues critical for metallo-β-lactamase function by codon randomization and selection. Protein Sci. 10:2556-2565.
Miriagou, V., E. Tzelepi, G. L. Daikos, P. T. Tassios, and L. S. Tzouvelekis. 2005. Panresistance in VIM-1-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 55:810-811.
Moali, C., C. Anne, J. Lamotte-Brasseur, S. Groslambert, B. Devreese, J. Van Beeumen, M. Galleni, and J. M. Frere. 2003. Analysis of the importance of the metallo-β-lactamase active site loop in substrate binding and catalysis. Chem. Biol. 10:319-329.
Nozaki, Y. 1972. The preparation of guanidine hydrochloride. Methods Enzymol. 26C:43-50.
Queenan, A. M., and K. Bush. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20:440-458.
Rossolini, G. M., and J. D. Docquier. 2007. Class B β-lactamases, p. 115-144. In R. A. Bonomo and M. E. Tolmasky (ed.), Enzyme-mediated resistance to antibiotics: mechanisms, dissemination, and prospects for inhibition. ASM Press, Washington, DC.
Rossolini, G. M., F. Luzzaro, R. Migliavacca, C. Mugnaioli, B. Pini, L. F. De, M. Perilli, S. Pollini, M. Spalla, G. Amicosante, A. Toniolo, and L. Pagani. 2008. First countrywide survey of acquired metallo-β-lactamases in gramnegative pathogens in Italy. Antimicrob. Agents Chemother. 52:4023-4029.
Studier, F. W. 2005. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41:207-234.
Vatopoulos, A. 2008. High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece-a review of the current evidence. Euro Surveill. 13:8023.
Yamaguchi, Y., W. Jin, K. Matsunaga, S. Ikemizu, Y. Yamagata, J. Wachino, N. Shibata, Y. Arakawa, and H. Kurosaki. 2007. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-β-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J. Med. Chem. 50:6647-6653.