[en] AIM: Myocardial revascularisation being frequently performed during acute myocardial ischemia, in a hostile hemodynamic environment, we evaluated left ventriculo-arterial (VA) coupling, left ventricular (LV) mechanical efficiency, and the mechanical properties of the systemic vasculature during acute myocardial ischemia. METHODS: In 6 pigs, vascular properties [characteristic impedance (R(1)), peripheral resistance (R(2)), compliance (C), inductance (L), arterial elastance (E(a))] were estimated with a windkessel model. LV function was assessed by the slope (E(es)) of end-systolic pressure-volume relationship (ESPVR), and stroke work (SW) - end-diastolic volume (EDV) relation. Pressure-volume area (PVA) was referred to as myocardial oxygen consumption. VA coupling was defined as E(es)/E(a), and mechanical efficiency as SW/PVA. After baseline recordings, the left anterior descending coronary artery was ligated and hemodynamic measures obtained every 30 minutes for 3 hours. Data are expressed as mean (SEM). RESULTS: Coronary occlusion induced an ESPVR rightward shift, and decreased E(es) from 3.67 (0.33) to 1.92 (0.20) mmHg/ml and the slope of the SW - EDV relationship from 72.3 (3.4) to 40.4 (4.5) mmHg (p<0.001), while E(a) increased from 3.33 (0.56) to 4.65 (0.29) mmHg/ml (p<0.005). This was responsible for a dramatic alteration of VA coupling from 1.22 (0.11) to 0.44 (0.07), (p<0.001). While R2 increased from 1.72 (0.30) to 2.38 (0.16) mmHg x s x ml(-1) (p<0.05) and C decreased from 0.78 (0.16) to 0.46 (0.08) ml/mmHg (p<0.05), R(1) and L were unchanged. Coronary occlusion decreased SW from 4056 (223) to 2580 (122) mmHg.ml (p<0.001), while PVA and SW/PVA decreased from 5575 (514) to 4813 (317) mmHg x ml (NS), and from 0.76 (0.04) to 0.57 (0.03) (p<0.001), respectively. CONCLUSION: Acute myocardial ischemia severely altered left ventriculo-arterial coupling and LV mechanical efficiency. Impaired left VA coupling was due to a combination of augmented arterial elastance, secondary to early vasoconstriction later associated with decreased arterial compliance, and decreased LV contractility.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Kolh, Philippe ; Université de Liège - ULiège > Département des Sciences biomédicales et précliniques > Service de Biochimie et de Physiologie humaines, normale et pathologique
Lambermont, Bernard ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Ghuysen, Alexandre ; Université de Liège - ULiège > Département des sciences de la santé publique > Réanimation - Urgence extrahospitalière
D'Orio, Vincenzo ; Université de Liège - ULiège > Département des sciences cliniques > Médecine d'urgence - bioch. et phys. hum. normales et path.
Gérard, Paul ; Université de Liège - ULiège > Département de mathématique > Statistique (aspects expérimentaux)
Morimont, Philippe ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Tchana-Sato, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Chirurgie cardio-vasculaire
Pierard, Luc ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
Dogné, Jean-Michel ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Limet, Raymond ; Université de Liège - ULiège > Département des sciences cliniques > Chirurgie cardio-vasculaire et thoracique
Language :
English
Title :
Alteration of left ventriculo-arterial coupling and mechanical efficiency during acute myocardial ischemia
Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol 1986;250:R1021-7.
Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng 1984;12:163-89.
Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983;245:H773-80.
Piene H. Interaction between the right heart ventricle and its arterial load: a quantitative solution. Am J Physiol 1980;238:H932-7.
Piene H, Sund T. Does normal pulmonary impedance constitute the optimal load for the right ventricle? Am J Physiol 1982;242:H154-60.
Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 1985;56:586-95.
Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res 1989;65:483-93.
Baan J, van der Velde ET, De Bruin HG, Smeenk G, Koops J, van Dijk A et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984;70:812-23.
Steendijk P, van der Velde ET, Baan J. Single and dual excitation of the conductance-volume catheter analyzed in a spheroidal mathematical model of the canine left ventricle. Eur Heart J 1992;13 Suppl E:28-34.
Suga H, Kitabatake A, Sagawa K. End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ Res 1979;44:238-49.
Suga H. External mechanical work from relaxing ventricle. Am J Physiol 1979;236:H494-7.
Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 1979;236: H498-505.
Denslow S. Relationship between PVA and myocardial oxygen consumption can be derived from thermodynamics. Am J Physiol 1996;270:H730-40.
Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol 1971;31:776-81.
Grant B, Paradowski L. Characterization of pulmonary arterial input impedance with lumped parameter models. Am J Physiol 1987;252:H585-93.
Lambermont B, Kolh P, Detry O, Gerard P, Marcelle R, D'Orio V. Analysis of endotoxin effects on the intact pulmonary circulation. Cardiovasc Res 1999;41:275-81.
Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac contraction and the pressure-volume relationship. New York: Oxford University Press; 1988.
Winer BJ. Statistical principles in experimental design. 2nd ed. New York: McGraw-Hill; 1971.
Kass DA, Midei M, Brinker J, Maughan W. Influence of coronary occlusion during PTCA on end-systolic and end-diastolic pressure-volume relations in humans. Circulation 1990;81:447-60.
Sunagawa K, Maughan WL, Sagawa K, Ishide N, Kitaoka S, Tamaki K et al. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ Res 1983;52:170-8.
Little W, O'Rourke R. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relation in chronically instrumented dogs. J Am Coll Cardiol 1985;5:297-302.
Kass DA, Marino P, Maughan W, Sagawa K. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation 1989;80:1783-94.
Glower D, Spratt J, Snow TR, Kabas JS, Davis JW, Olsen C et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985;71:994-1009.
Baan J, van der Velde ET. Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ Res 1988;62:1247-58.
van der Velde ET, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation 1991;83:315-27.
Little W. The left ventricular dP/dtmax - end-diastolic volume relation in closed-chest dogs. Circ Res 1985;56:808-15.
Kass DA, Maughan WL, Guo ZM, Kono, A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contratility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987;76:1422-36.
Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 1981;63:1223-7.
Seki H, Katayama K, Sakai H, Yonezawa T, Kunichika H, Saeki Y et al. Effect of dobutamine ventriculoarterial coupling in acute regional myocardial ischemia in dogs. Am J Physiol 1996;270:H1279-86.
Kolh P, D'Orio V, Lambermont B, Gerard P, Gommes C, Limet R. Increased aortic compliance maintains left ventricular performance at lower energetic cost. Eur J Cardiothorac Surg 2000;17:272-8.
Armstrong B, Zidar JP, Ohman EM. The use of intraaortic balloon counterpulsation in acute myocardial infarction and high risk coronary angioplasty. J Int Cardiol 1995;8:185-91.