[en] AIM: Myocardial revascularisation being frequently performed during acute myocardial ischemia, in a hostile hemodynamic environment, we evaluated left ventriculo-arterial (VA) coupling, left ventricular (LV) mechanical efficiency, and the mechanical properties of the systemic vasculature during acute myocardial ischemia. METHODS: In 6 pigs, vascular properties [characteristic impedance (R(1)), peripheral resistance (R(2)), compliance (C), inductance (L), arterial elastance (E(a))] were estimated with a windkessel model. LV function was assessed by the slope (E(es)) of end-systolic pressure-volume relationship (ESPVR), and stroke work (SW) - end-diastolic volume (EDV) relation. Pressure-volume area (PVA) was referred to as myocardial oxygen consumption. VA coupling was defined as E(es)/E(a), and mechanical efficiency as SW/PVA. After baseline recordings, the left anterior descending coronary artery was ligated and hemodynamic measures obtained every 30 minutes for 3 hours. Data are expressed as mean (SEM). RESULTS: Coronary occlusion induced an ESPVR rightward shift, and decreased E(es) from 3.67 (0.33) to 1.92 (0.20) mmHg/ml and the slope of the SW - EDV relationship from 72.3 (3.4) to 40.4 (4.5) mmHg (p<0.001), while E(a) increased from 3.33 (0.56) to 4.65 (0.29) mmHg/ml (p<0.005). This was responsible for a dramatic alteration of VA coupling from 1.22 (0.11) to 0.44 (0.07), (p<0.001). While R2 increased from 1.72 (0.30) to 2.38 (0.16) mmHg x s x ml(-1) (p<0.05) and C decreased from 0.78 (0.16) to 0.46 (0.08) ml/mmHg (p<0.05), R(1) and L were unchanged. Coronary occlusion decreased SW from 4056 (223) to 2580 (122) mmHg.ml (p<0.001), while PVA and SW/PVA decreased from 5575 (514) to 4813 (317) mmHg x ml (NS), and from 0.76 (0.04) to 0.57 (0.03) (p<0.001), respectively. CONCLUSION: Acute myocardial ischemia severely altered left ventriculo-arterial coupling and LV mechanical efficiency. Impaired left VA coupling was due to a combination of augmented arterial elastance, secondary to early vasoconstriction later associated with decreased arterial compliance, and decreased LV contractility.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Kolh, Philippe ; Université de Liège - ULiège > Département des Sciences biomédicales et précliniques > Service de Biochimie et de Physiologie humaines, normale et pathologique
Lambermont, Bernard ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Ghuysen, Alexandre ; Université de Liège - ULiège > Département des sciences de la santé publique > Réanimation - Urgence extrahospitalière
D'Orio, Vincenzo ; Université de Liège - ULiège > Département des sciences cliniques > Médecine d'urgence - bioch. et phys. hum. normales et path.
Gérard, Paul ; Université de Liège - ULiège > Département de mathématique > Statistique (aspects expérimentaux)
Morimont, Philippe ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Tchana-Sato, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Chirurgie cardio-vasculaire
Pierard, Luc ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
Dogné, Jean-Michel ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Limet, Raymond ; Université de Liège - ULiège > Département des sciences cliniques > Chirurgie cardio-vasculaire et thoracique
Language :
English
Title :
Alteration of left ventriculo-arterial coupling and mechanical efficiency during acute myocardial ischemia
Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol 1986;250:R1021-7.
Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng 1984;12:163-89.
Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983;245:H773-80.
Piene H. Interaction between the right heart ventricle and its arterial load: a quantitative solution. Am J Physiol 1980;238:H932-7.
Piene H, Sund T. Does normal pulmonary impedance constitute the optimal load for the right ventricle? Am J Physiol 1982;242:H154-60.
Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 1985;56:586-95.
Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res 1989;65:483-93.
Baan J, van der Velde ET, De Bruin HG, Smeenk G, Koops J, van Dijk A et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984;70:812-23.
Steendijk P, van der Velde ET, Baan J. Single and dual excitation of the conductance-volume catheter analyzed in a spheroidal mathematical model of the canine left ventricle. Eur Heart J 1992;13 Suppl E:28-34.
Suga H, Kitabatake A, Sagawa K. End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ Res 1979;44:238-49.
Suga H. External mechanical work from relaxing ventricle. Am J Physiol 1979;236:H494-7.
Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 1979;236: H498-505.
Denslow S. Relationship between PVA and myocardial oxygen consumption can be derived from thermodynamics. Am J Physiol 1996;270:H730-40.
Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol 1971;31:776-81.
Grant B, Paradowski L. Characterization of pulmonary arterial input impedance with lumped parameter models. Am J Physiol 1987;252:H585-93.
Lambermont B, Kolh P, Detry O, Gerard P, Marcelle R, D'Orio V. Analysis of endotoxin effects on the intact pulmonary circulation. Cardiovasc Res 1999;41:275-81.
Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac contraction and the pressure-volume relationship. New York: Oxford University Press; 1988.
Winer BJ. Statistical principles in experimental design. 2nd ed. New York: McGraw-Hill; 1971.
Kass DA, Midei M, Brinker J, Maughan W. Influence of coronary occlusion during PTCA on end-systolic and end-diastolic pressure-volume relations in humans. Circulation 1990;81:447-60.
Sunagawa K, Maughan WL, Sagawa K, Ishide N, Kitaoka S, Tamaki K et al. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ Res 1983;52:170-8.
Little W, O'Rourke R. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relation in chronically instrumented dogs. J Am Coll Cardiol 1985;5:297-302.
Kass DA, Marino P, Maughan W, Sagawa K. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation 1989;80:1783-94.
Glower D, Spratt J, Snow TR, Kabas JS, Davis JW, Olsen C et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985;71:994-1009.
Baan J, van der Velde ET. Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ Res 1988;62:1247-58.
van der Velde ET, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation 1991;83:315-27.
Little W. The left ventricular dP/dtmax - end-diastolic volume relation in closed-chest dogs. Circ Res 1985;56:808-15.
Kass DA, Maughan WL, Guo ZM, Kono, A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contratility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987;76:1422-36.
Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 1981;63:1223-7.
Seki H, Katayama K, Sakai H, Yonezawa T, Kunichika H, Saeki Y et al. Effect of dobutamine ventriculoarterial coupling in acute regional myocardial ischemia in dogs. Am J Physiol 1996;270:H1279-86.
Kolh P, D'Orio V, Lambermont B, Gerard P, Gommes C, Limet R. Increased aortic compliance maintains left ventricular performance at lower energetic cost. Eur J Cardiothorac Surg 2000;17:272-8.
Armstrong B, Zidar JP, Ohman EM. The use of intraaortic balloon counterpulsation in acute myocardial infarction and high risk coronary angioplasty. J Int Cardiol 1995;8:185-91.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.