Date palm, Sap, Phoenix dactylifera L.; SDS–PAGE, Mass spectrometry; Proteins
Résumé :
[en] The proteins contained in juice tapped from date palm (Phoenix dactylifera L.), from Deglet Nour variety,
were analysed by the application of two-dimensional electrophoresis (2DE). Identification was carried
out by mass spectrometry analyses. The SDS–PAGE patterns showed more than 100 spots of which 52
spots were identified. A proportion of the identified proteins were related to Saccharomyces cerevisiae that
may belong to the natural microflora of date palm sap. These proteins are principally involved in glycolysis.
While other proteins were assigned to be vegetable proteins, probably a mixture of proteins from the
vascular system, which have several biological functions within the palm tree. Thus, we found enzymes
involved in stress and defence reactions, in glycolysis, and photosynthesis reactions. Other enzymes are
associated with carbohydrates and proteins metabolisms.
Disciplines :
Biotechnologie
Auteur, co-auteur :
Ben Thabet, Imène
Francis, Frédéric ; Université de Liège - ULiège > Sciences agronomiques > Entomologie fonctionnelle et évolutive
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Besbes, Souhail
Attia, Hamadi
Deroanne, Claude
Blecker, Christophe ; Université de Liège - ULiège > Chimie et bio-industries > Science des alim. et formul.
Langue du document :
Anglais
Titre :
Characterisation of proteins from date palm sap (Phoenix dactylifera L.) by a proteomic approach
Atputharajah J.D., Widanapathirana S., Samarajeewa U. Microbiology and biochemistry of natural fermentation of coconut palm sap. Food Microbiology 1986, 3:273-280.
Barnes A., Bale J., Constantinidou C., Ashton P., Jones A., Pritchard J. Determining protein identify from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. Journal of Experimental Botany 2004, 55:1473-1481.
Barreveld W.H. Date palms products 1993, FAO, Rome, 101.
Ben Thabet I., Attia H., Besbes S., Deroanne C., Francis F., Drira N.D., et al. Physicochemical and functional properties of typical Tunisian drink: Date palm sap (Phoenix dactylifera L.). Food Biophysics 2007, 2:76-82.
Ben Thabet I., Besbes S., Attia H., Deroanne C., Francis F., Drira N.E., et al. Physicochemical characteristics of date sap " lagmi" from Deglet Nour palm (Phoenix dactylifera L.). International Journal of Food Properties 2009, 12:659-670.
FAOSTAT Agro-statistics database 2008, Food and Agriculture Organization of the United Nations, Rome.
Francis F., Gerkens P., Harmel N., Mazzucchelli G., De Pauw E., Haubruge E. Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology 2006, 36:219-227.
Gagnaire V., Piot M., Camier B., Vissers J.P.C., Jan G., Léonil J. Survey of bacterial proteins released in cheese: A proteomic approach. International Journal of Food Microbiology 2004, 94:185-201.
Garrett, D. R. H., Grisham, C. M., & Lubochinsky, B. (2000). Biochimie. De Boeck University, p. 1292.
Hancock J.T., Henson D., Nyirenda M., Desikan R., Harrison J., Lewis M., et al. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiology and Biochemistry 2005, 43:828-835.
Jiang L., He L., Fountoulakis M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Journal of Chromatography A 2004, 1023:317-320.
Kehr J., Buhtz A., Giavalisco P. Analysis of xylem sap proteins from Brassica napus. BMC Plant Biology 2005, 5:1-13.
König S. Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochimica et Biophysica Acta 1998, 1385:271-286.
Meares G.P., Zmijewska A.A., Jope R.S. Heat shock protein-90 dampens and directs signalling stimulated by insulin-like growth factor-1 and insulin. FEBS Letters 2004, 574:181-186.
Mzali M.T., Lasram M., Rhouma A. Le palmier dattier (Phoenix dactylifera L.). L'arboriculture fruitière en Tunisie 2002, 201-229. ORBIS Press, Tunis. M.T. Mzali, M. Lasram, A. Rhouma (Eds.).
Naidu S.J., Misra M.K. Production and consumption of wild date palm sap and country liquor in two tribal village ecosystems of Eastern Ghats of Orissa, India. Bioresource Technology 1998, 63:267-273.
Nakamura S., Watanabe A., Chongpraditnum P., Suzui N., Hayashi H., Hattori H., et al. Analysis of phloem exudates collected from fruit-bearing stems of coconut palm: Palm trees as a source of molecules circulating in sieve tubes. Soil Science and Plant Nutrition 2004, 50:739-745.
Olczak M., Waltorek W. Structural analysis of N-glycans from yellow lupin (Lupinus luteus) seed diphosphonucleotide phosphatase/phosphodiesterase. Biochimica et Biophysica Acta 2000, 1523:236-245.
Oparka K.J., Turgeon R. Sieve elements and companion cells-traffic control centers of the phloem. The Plant Cell 1999, 11:739-750.
Peterbauer T., Lahuta L.B., Mucha A.B.J., Jones D.A., Hedley C.L., Gorecki R.J., et al. Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiology 2001, 127:1764-1772.
Petersen J.G., Holmberg S. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids Research 1986, 14(24):9631-9651.
Ruiz-Medrano R., Xoconostle-cāzares B., Schad M., Lucas W.J. The phloem as a conduit for inter-organ communication. Current Opinion in Plant Biology 2001, 4:202-209.
Shamala T.R., Sreekantiah K.R. Microbiological and biochemical studies on traditional Indian palm wine fermentation. Food Microbiology 1988, 5:157-162.
Shanmugam V. Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiology Research 2005, 160:83-94.
Sharif A.L., Smith A.G., Abell C. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. European Journal of Biochemistry 1989, 184:353-359.
Silvente S., Camas A., Lara M. Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism. Journal of Experimental Botany 2003, 54:1545-1551.
Thompson C.E., Salzano F.M., Souza O.N., Freitas L.B. Sequence and structural aspects of the functional diversification of plant alcohol dehydrogenases. Gene 2007, 396:108-115.
Thompson G.A., Schulz A. Macromolecular trafficking in the phloem. Trends in Plant Science 1999, 4:354-360.
Umerie S.C. Caramel production from saps of African oil palm (Elaeis guineensis) and wine palm (Raphia hookeri) trees. Bioresource Technology 2000, 75:167-169.
Vanderghem C., Blecker C., Danthine S., Deroanne C., Haubruge E., Guillonneau F., et al. Proteome analysis of the bovine milk fat globule: Enhancement of membrane purification. International Dairy Journal 2008, 18:885-893.
Walz C., Giavalisco P., Schad M., Juenger M., Klose J., Kehr J. Proteomics of cucurbit phloem exudate reveals a network of defence proteins. Phytochemistry 2004, 65:1795-1804.
Walz C., Juenger M., Schad M., Kehr J. Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. The Plant Journal 2002, 31:189-197.
Westermeier R. Sensitive, quantitative, and fast modifications for Coomassie blue staining of polyacrylamide gels. Practical Proteomics 2006, 1-2:61-63.
Wirth D., Christians E.S., Drion P.V., Dessy-Doize C., Gustin P. Les protéines de choc thermique (heat shock proteins-Hsps). II. Hsp70: Biomarqueur et acteur du stress cellulaire. Annales de Médecine Vétérinaire 2003, 147:127-144.