Poster (Scientific congresses and symposiums)Microwave – assisted synthesis of carbohydrate compounds, focus on uronic acid derivatives.
Laurent, Pascal; Richel, Aurore; Wathelet, Bernard et al.
2010 • First Workshop of the COST Action CM09030 (UBIOCHEM I): Utilisation of Biomass for fuels and chemicals – The road to sustainability
No document available.
Abstract :
[en] At the moment, biorefining is increasingly seen as a promising alternative to petrochemical sector since it targets both the replacement of part of petroleum as a source of energy and the development of chemicals from the biomass, such as detergents, phytopharmaceutics, solvents, plastics, etc. The valorisation of carbohydrates arising from the hydrolysis of renewable feedstocks is therefore an area of outmost interest.
In this context, uronic acids such as glucuronic acid (GlcA) or galacturonic acid (GalA) derived from widely available raw material such as hemicellulose or pectins represent important biocompatible and bioresorbable starting material. The quest of highly effective, environmentally friendly and straightforward chemical strategies to transform totally O-unprotected uronic acids into high valuable materials remains actually a particularly challenging task.
A new strategy enabling the quantitative “one-pot” production of water-soluble monosubstituted D-glucofuranosidurono-6,3-lactones from unprotected D-glucuronic acid (D-GlcA) involving microwaves and an inexpensive siliceous-based promoter will be described.
The use of a heterogeneous acid catalytic systems consisting of sulfuric acid impregnated onto silica (H2SO4/SiG60) or onto carbon (H2SO4/C), offers a green alternative to unrecyclable liquid sulfuric acid and permit the developpment of a truly eco-friendly green process, as these supported acids were readily separated from liquid products, without neutralization, by decantation or filtration, thus minimizing energy consumption and wastes. Faced with environmental concerns, this solventless methodology offers attractive features, including short reaction times, high yields and easy set-up and workup.