Abstract :
[en] This paper proposes an approach coupling security constrained optimal power flow with time-domain simulation to determine an optimal combination of preventive and corrective controls ensuring a voltage stable transition of the system towards a feasible long-term equilibrium, if any of a set of postulated contingencies occurs. A security-constrained optimal power flow is used to adjust the respective contribution of preventive and corrective actions. Furthermore, information is extracted from (quasi steady-state) time-domain simulations to iteratively adjust the set of coupling constraints used by a corrective security constrained optimal power flow until its solution is found dynamically secure and viable. Numerical results are provided on a realistic 55-bus test system.
Commentary :
(c)2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Scopus citations®
without self-citations
34