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Coupling Optimization and Dynamic Simulation for
Preventive-Corrective Control of Voltage Instability
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Abstract—This paper proposes an approach coupling secu-
rity-constrained optimal power flow with time-domain simulation
to determine an optimal combination of preventive and corrective
controls ensuring a voltage stable transition of the system towards
a feasible long-term equilibrium, if any of a set of postulated
contingencies occurs. A security-constrained optimal power flow
is used to adjust the respective contribution of preventive and cor-
rective actions. Furthermore, information is extracted from (quasi
steady-state) time-domain simulations to iteratively adjust the set
of coupling constraints used by a corrective security-constrained
optimal power flow until its solution is found dynamically secure
and viable. Numerical results are provided on a realistic 55-bus
test system.

Index Terms—Emergency control, optimal power flow, preven-
tive control, time-domain simulation, voltage stability.

I. INTRODUCTION

T HE optimal power flow (OPF) problem [1], [2] is a
nonlinear, nonconvex, static, large-scale optimization

problem which aims at optimizing control means while satis-
fying some equality constraints (e.g., power flow equations)
and inequality constraints (e.g., system operation limits).

The need to take into account constraints on the performance
of the system subjected to contingencies has led to the secu-
rity-constrained OPF problem [3], which has been formulated
under “preventive” [3] and “corrective” [4] modes. The latter,
referred to as CSCOPF in the sequel, allows for adjusting con-
trols, other than automatic ones, in post-contingency states. One
underlying assumption is that post-contingency constraint vio-
lations (e.g., thermal limits, voltage bounds, etc.) can be toler-
ated for some time without damaging the corresponding equip-
ments or inducing cascading trippings, thus leaving some room
for the application of corrective controls. Another implicit as-
sumption is that the system will be stable in its post-contin-
gency configuration so that there will be an opportunity to drive
the system to a viable state through corrective controls. Since
the system dynamics are not explicitly taken into account in the
CSCOPF formulation, the latter is normally formulated conser-
vatively, by imposing ad-hoc constraints on the magnitude of
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post-contingency controls and/or the target feasible region. This
may however lead to sub-optimalities and/or undetected risks of
instability.

In this paper, we focus on long-term voltage security control,
which has already received significant attention in the context of
OPF [5]–[9] and to some extent in the context of security-con-
strained OPF [7] or dedicated methods [10], [11]. Most of these
approaches consist in adding to the OPF problem some con-
straints ensuring a minimal voltage stability margin for the base
case and/or for postulated contingencies. Optimal control ac-
tions to ensure voltage stability are then computed separately,
either preventive ones [5]–[10] or corrective ones [5]–[7], [11].
However, most of these optimization approaches do not take into
account system dynamics. There are some exceptions such as
[10] and [11] where time-domain simulations are used to check
voltage stability, but these references only consider preventive
[10] or corrective controls [11], respectively, and not the com-
bination of both. Methods incorporating the discretized system
trajectory as constraints into the optimization itself have been
proposed in [12] and [13]. Although general, this approach re-
mains computationally demanding.

A first step towards efficient incorporation of system dy-
namics in the CSCOPF formulation was proposed in [14]. It
consists in imposing constraints that ensure the existence and
viability of the post-contingency short-term equilibrium of the
system until corrective actions can start. Although necessary,
these conditions are however not sufficient to obtain a stable
transition towards a long-term equilibrium. Moreover, it may
be difficult to determine beforehand how much the long-term
viability constraints should be relaxed in the short term.

Determining optimal combinations of preventive and correc-
tive controls while also ensuring system stability thus remains
an open problem in the context of CSCOPF [15], [16]. In this
paper, we propose an approach to determine an optimal com-
bination of preventive and corrective control actions ensuring
satisfactory dynamic transition of the system towards a feasible
long-term equilibrium, if any of a set of postulated contingen-
cies occurs. This approach combines static optimization with
quasi steady-state simulation [17]. Information provided by the
latter is used to iteratively modify the combination of preven-
tive and corrective controls. This time-domain method has been
used for its good trade-off between accuracy and speed but other
(efficient) time-domain simulations could be used.

Furthermore, this paper focuses on generation rescheduling.
Post-disturbance generation rescheduling can indeed be an
effective countermeasure against long-term voltage instability
provided that generators with some reserves are properly lo-
cated (e.g., with respect to loads driving voltage instability).
The proposed approach could however be extended to other
countermeasures such as generator voltage control, shunt com-
pensation switching or load shedding, by either adding them
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to the optimized controls or by taking them into account as
automatic devices in the time-domain simulation.

Given the cost of generation rescheduling and the low proba-
bility of occurrence of contingencies, it is highly desirable to re-
sort to post-disturbance control [4], [18]. However, an essential
feature of these controls is their limited rate of change. In fact,
the time needed to implement them may significantly decrease
their ability to save a system from long-term voltage instability,
for which speed of response is an issue [17]. As a result, more
controls may be required and a main objective of this paper is
to address this dynamic issue.

The paper is organized as follows. Section II deals with static
optimization in preventive/corrective mode, while the incorpo-
ration of dynamic aspects is considered in Section III. Algo-
rithms to obtain the sought combination of preventive and cor-
rective controls are presented in Section IV. A detailed example
is given in Section V, and Section VI concludes.

II. STATIC OPTIMIZATION OF PREVENTIVE

AND CORRECTIVE CONTROL ACTIONS

A. Preventive Controls Through CSCOPF

The CSCOPF problem can be compactly stated as follows
(see the Appendix for the detailed model used in our implemen-
tation):

(1)

(2)

(3)

(4)

where corresponds to the pre-contingency configuration
while correspond to the post-contingency con-
figurations, models the cost of preventive control actions,
is the vector of state variables (i.e., real and imaginary part of
voltage at all buses), (resp. ) is the vector
of preventive (resp. corrective) control variables (e.g., generator
active powers, generator terminal voltages, controllable trans-
former ratios, shunt reactances, etc.), is the assumed time
horizon allowed for corrective control to ensure feasibility of
the th post-contingency state and is the vector of
maximum ramp rates of corrective controls.

Constraints (2) and (3) impose the feasibility (existence
and viability) of the pre-contingency and corrected post-con-
tingency states. Constraints (2) are mainly the ac power flow
equations, while constraints (3) concern operation limits (e.g.,
limits on: control variables, branch currents, etc.). Inequalities
(4) are “coupling” constraints between the preventive and
corrective values of control variables aimed to prevent unre-
alistic variations of control variables in corrective mode. The
product is thus the vector of maximal allowed
variations of control variables between the base case and th
post-contingency state. Clearly, setting to zero is equivalent
to resorting to pre-contingency controls only.

We assume the CSCOPF problem is solved by an iterative
algorithm aimed to quickly identifying contingencies prone to

be binding at the optimum and including those contingencies
only into the optimization.

B. Corrective Controls Through Post-Contingency OPF

Assume that the system operates in a base case with the con-
trols set to , solution of the optimization problem (1)–(3) lim-
ited to , i.e., with the contingencies ignored. Assessing
the effect of the contingencies may lead to one of the following
three situations:

1) the operating constraints (2) and (3) are still satisfied after
each contingency. There is no need for a preventive or cor-
rective action. The system can be operated in the base case
and no additional cost is incurred;

2) the constraints (2) and (3) are violated after some contin-
gency but there exists at least one value of satis-
fying (4) and allowing the constraints (2) and (3) to be met
in the post-contingency post-correction situation. In other
words, it is possible to meet the constraints by correcting
the operating point after the contingency. Hence, no pre-
ventive action is needed and, again, there is no additional
cost with respect to the base case;

3) the constraints (3) are violated after some contingency
and there is no value of satisfying (2), (3) and (4).

Assuming that the CSCOPF problem is feasible, it is re-
quired to modify and hence, there is a cost associated
with security enhancement. The latter, however, is kept to
a minimum by exploiting corrective controls to the greatest
extent possible. As a result, some or all constraints (4) will
be binding at the optimum.

Let us observe that in the second situation there is in general
more than one value of satisfying (2)–(4). In other words, the
CSCOPF problem has multiple solutions, all equally optimal in
terms of pre-contingency operating costs .

To distinguish between the various solutions, one could add
post-contingency control costs to the objective function. How-
ever, this would require to somehow account for the probability
of occurrence of the contingency. Furthermore, it is widely
agreed that in normal, pre-contingency conditions the main
objective is to minimize operating costs while in the (compara-
tively short-lasting) emergency situations the main objective is
to effectively eliminate constraint violations. Hence, we prefer
to consider pre-contingency operating costs only and select
the optimal post-contingency controls according to another
criterion.

To this purpose, we first solve the CSCOPF formulation
(1)–(4) so as to determine optimal settings for the preventive
control variables while ensuring the existence of feasible
corrective controls for each contingency. Then, in a second
step, we freeze the preventive control settings to , and
compute for each contingency an optimal corrective control

. Note that this second step needs to be carried out only for
those contingencies that would otherwise lead to constraint
violations.

To determine appropriate corrective control actions, several
objectives can be thought of: minimum post-contingency con-
trol deviations, minimum number of post-contingency control
actions, minimum load shedding, etc. Since we focus on cor-
rective generation rescheduling [4], [18], we propose to take as
objective function the total deviation of generator active powers
with respect to their pre-contingency values. This choice leads,
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for the th contingency, to the following post-contingency op-
timal power flow (PCOPF) problem:

(5)

(6)

(7)

(8)

where is the vector of preventive control settings, is
a vector whose elements corresponding to generator active
powers are equal to one and zero otherwise, and is the
assumed time horizon allowed for corrective actions. Control
variables, equality and inequality constraints (6)–(8) have the
same meaning as in the CSCOPF formulation. The reason for
having different from will appear in the sequel.

The objective (5) is a reasonable default choice, favoring an
as small as possible corrective control effort. It makes sense in
an emergency mode where speed of action is of concern, es-
pecially if system stability is threatened. Notice however, that
alternative objective functions could be used together with the
rate constraint (8). Changing this objective function leads to
different post-contingency controls but does not affect the
system operating costs . Furthermore, if a contingency (be-
longing to the third situation previously described) constrains
the CSCOPF optimum, there is no degree of freedom on
(i.e., CSCOPF and PCOPF yield the same optimal corrective
controls) and hence PCOPF objective function has no impact
on pre-contingency operating costs.

Unless confusion is possible, we drop from the notation index
referring to the considered contingency. We denote a solution

of the PCOPF by , recalling that this so-
lution depends on the parameters and .

Since we occasionally need to call the PCOPF under con-
ditions where feasibility is not guaranteed, to quickly identify
problem infeasibility and prevent numerical trouble we use a
classical scheme combining relaxation [e.g., of constraints (7)
and (8)] and penalization [4], not explicitly shown here.

III. INCORPORATING DYNAMIC ASPECTS

A. Basic Assumptions

In response to a disturbance happening at time , we assume
that:

• generator active powers can be changed after a delay ,
assumed identical for all generators for simplicity;

• the rate of change of each production cannot exceed some
value;

• the duration of the power adjustment cannot exceed some
value , also assumed identical for all generators.

Thus, generator active powers are assumed to vary linearly
as sketched in Fig. 1, where three generations are adjusted from

to in at most seconds.
As we concentrate on long-term dynamics, we assume system

short-term stability (possibly with the help of preventive and/or
fast automatic post-contingency controls), so that no instability
occurs before , where generator active powers start being
adjusted.

Furthermore, in order to determine whether the system re-
sponds in a stable way to the contingency and reaches in less

Fig. 1. Change in generation assumed in post-disturbance situation.

than seconds (after the disturbance inception) a new long-
term equilibrium satisfying specified operation limits, we sim-
ulate its dynamic response over the interval.

B. Coupling Optimization and Dynamic Simulation: Principle

The previously defined static optimization problems are cou-
pled with dynamic simulation as follows.

Assume, for a given corrective action time , that the post-
contingency system evolution is voltage unstable while or after
applying the computed optimal corrective actions. This means
that the time left to counteract voltage instability was overesti-
mated and stronger corrective controls have to be applied.

To make corrective actions more effective, we consider
smaller values of in the PCOPF problem. In fact, reducing
the value of in (8) has two effects. On one hand, tightening
the bounds on control variations will lead to increasing the
number of corrective controls and consequently resorting to
less efficient ones. On the other hand, these more numerous
controls will start acting at . Clearly, the former effect
is negative while the latter is positive. If the additional called
up controls are much less efficient, no improvement is likely
to result from a decrease of . On the contrary, if the effi-
ciency of the additional controls is not much lower, generation
rescheduling will take place faster; hopefully, fast enough to
avoid voltage instability [17]. As a simple example, a correction

applied simultaneously on two equivalent generators
is more efficient than a correction on a single generator.
Provision is made in the algorithms to detect situations where
the negative effect would dominate.

We seek to determine an optimal combination of preventive
and corrective controls such that, at the end of the observation
time , the system has reached a long-term equilibrium sat-
isfying final operation limits. To this purpose, we build upon the
following ideas:

• we assume that we are given a maximum time
for corrective controls to take place;

• we seek to determine the largest value of
such that the post-disturbance evolution meets the above
requirement. Indeed, the larger , the smaller the preven-
tive control cost;

• for a given value of , we may compute preventive con-
trols by CSCOPF, use with different values
of to determine by PCOPF,
and check through dynamic simulation whether that con-
trol combination yields the desired response;

• among the values of yielding satisfactory system evolu-
tions, we want to determine the largest one, so as to mini-
mize post-contingency control.
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Fig. 2. Time horizon space � � � relative to a contingency. � corresponds to
stable system evolution towards a feasible equilibrium, � corresponds to voltage
unstable system evolution, and corresponds to infeasible PCOPF.

Algorithms implementing these ideas are given in Section IV.
Finally, operating rules may require the system to have in ad-

dition a minimum security margin with respect to instability. If
a minimum security margin is required only for the base case
the CSCOPF model (1)–(4) can be extended by adding the con-
straints (2) and (3) corresponding to the system operating at
the minimum margin in pre-contingency state. Moreover, if the
system has to ensure a minimum margin with respect to all
contingencies, the “two-point” formulation of [7]–[9] can be
used at the expense of duplicating (2) and (3) for each contin-
gency.

IV. ALGORITHMS TO DETERMINE PREVENTIVE

AND CORRECTIVE CONTROLS

Let us denote by the subset of values of
leading both to feasible CSCOPF and

PCOPF, and by its subset leading also to stable dynamics.
Thus, we search for and

.
Given a combination and the corresponding

and we check whether belongs to
as explained in Section III.

Note that if for a certain combination the system is de-
clared unstable before we may conclude that for this

there are no corrective control actions ensuring a stable be-
havior; in other words, we may conclude that . On
the other hand, if leads to stable post-contingency dy-
namics, we may hope that larger values of and/or could also
lead to stable behavior; hence we may conclude that
and . Finally, if leads to an instability after

it is hoped that smaller values of for the same will
lead to a stable behavior.

A. Illustration for a Single Contingency

Fig. 2 illustrates the effect of and and the search of
for a contingency analyzed in detail in Sec-

tion V-C. Observe that PCOPF infeasibility cannot happen
for , while feasibility and even stable post-contingency
dynamics are possible when . Note that is not
considered, since, if feasible, the PCOPF problem has the trivial
solution (no corrective action).

The point ( s, s) represents in this example
the optimal combination of preventive and corrective controls.
Arrows suggest how this point is determined iteratively, starting
from the upper right corner of the diagram. It can be seen that
for s no corrective actions are able to ensure
post-contingency voltage stability, the system becoming voltage
unstable too quickly after the start of corrective actions. On the
other hand, for s the system is voltage stable without
any corrective actions. For the optimal value
s, the system behavior is stable for s, and
(reasonably) diminishing stabilizes the system.

For the case shown in Fig. 2, no preventive action is taken for
s and s; hence, for the same , the system

behavior is the same for s and s. Hence, to
save computational time, the search of is not performed
for s.

B. Algorithm for Handling a Single Contingency

The goal of the algorithm, given in Fig. 3, is to search for a
good approximation of and in the subset.

The external loop looks for by calling CSCOPF while
the internal loop searches for by calling PCOPF. Inside
both loops dynamic simulation is called to check the system
time response. The external loop uses a bisection method (or
binary search), based on the assumption that when a value of

leads to instability for all values of , then a larger value of
will not help. On the contrary, because a similar assumption

does not necessarily hold true for , the internal search decreases
by constant steps.
Note that to save computational time, the algorithm starts by

checking, for each candidate value of , whether the system
becomes voltage unstable before generation rescheduling starts
(i.e., before ). If this happens it can be concluded
that for this value of no corrective controls are able to ensure
voltage stability .

The internal search for keeps on decreasing the
value of until: 1) the system becomes voltage stable, 2) ,
or 3) the PCOPF becomes infeasible. This last condition is
justified by the fact that if the PCOPF is infeasible for a given

, it will remain so also for smaller values.
Two particular outcomes of the algorithm are noteworthy:

1) no preventive control is needed to obtain a stable post-con-
tingency evolution, which corresponds to .
It may even be possible that the contingency is not binding
at the optimum in which case the CSCOPF optimum

coincides with that of an OPF including base
case constraints only;

2) preventive actions must be taken in order to enhance the
base case such that the system withstands the contingency
while considering corrective actions. This situation is re-
vealed when, for , either the system becomes
voltage unstable before the corrective actions can start or
when corrective actions are unable to avoid voltage insta-
bility.

To simplify presentation some shortcuts to avoid useless
computations are not detailed here, for instance when different
values of (resp. ) lead to identical pre-contingency (resp.
post-contingency) controls. Also, the internal search for
can be improved if the range of values leading to stable behavior
can be assumed to lie in a connected interval.
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Fig. 3. Flowchart of the search algorithm of a valid optimal combination of
preventive and corrective controls for a single contingency.

C. Algorithm for Handling Several Contingencies

The algorithm to determine an optimal combination of pre-
ventive and corrective actions for CSCOPF problem (1)–(4) is
provided in Fig. 4 (notation as in Section IV-B). Observe that
the algorithm of Fig. 3 computing an optimal combination of
preventive and corrective actions for a given contingency is em-
bedded in the algorithm of Fig. 4.

Fig. 4. Flowchart of the search algorithm of a valid optimal combination of
preventive and corrective controls for a list of contingencies.

This algorithm terminates whenever one of following condi-
tions is met: 1) for the current vector of time horizons, for
which CSCOPF has been solved, all contingencies can be
taken care of by corrective actions, 2) for at least one contin-
gency, and no corrective action yields a post-con-
tingency voltage stable evolution, or 3) the CSCOPF becomes
infeasible indicating that no combination of preventive and cor-
rective controls is able to ensure voltage stability with respect
to all contingencies simultaneously.

V. NUMERICAL RESULTS

A. Modelling, Objectives, and Criteria

The proposed approach is illustrated through tests on the
Nordic32 system [19], whose one-line diagram is shown in
Fig. 5. In this system voltage instability is caused by a large
power transfer in the corridor linking the North+Equiv and
Central+South regions (see Fig. 5). Hence, a preventive or
corrective increase of generation in the Central or Southern
areas, with a corresponding adjustment of Northern generators,
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Fig. 5. One-line diagram of Nordic32 system.

improves voltage stability. In corrective mode, however, this ac-
tion must be fast enough with respect to load power restoration
and generator excitation reduction [17]. As a result of stressed
operating conditions, the N-1 incidents considered hereafter are
equivalent to N-2 or more severe incidents in a real-life system.

The model includes 55 buses, 23 generators, 22 loads, 52
lines, 31 transformers (four with controllable ratio), and 11
shunts, respectively.

The objective of the CSCOPF problem is the overall gen-
eration cost (each generator has a quadratic cost). The con-
trol variables are the generator active powers. Equality con-
straints are the bus active/reactive power balance equations. In-
equality constraints stem from bounds on generator active/reac-
tive powers, voltage magnitudes, and branch currents. We use
the same branch thermal limits in all states, while bus voltage
magnitudes are allowed to vary between 0.95 p.u. (resp. 0.92
p.u.) and 1.10 p.u. in pre-contingency (resp. post-contingency)
state, except at buses 1044 and 1045, which are controlled by
load tap changers (LTCs) and hence vary in tighter intervals in
all states.

The above assumptions for CSCOPF are also made in
PCOPF which focuses on minimum post-contingency genera-
tion rescheduling (together with post-contingency feasibility).

Both OPF problems are solved using the interior-point
method described in [20].

The long-term system response to both contingency and
corrective generation rescheduling has been obtained by quasi
steady-state simulation (QSSS) [17]. The long-term dynamics
are driven by LTCs and overexcitation limiters (OELs), both
acting with various delays. In CSCOPF and PCOPF, loads
are represented as constant power at the transmission level,

while in QSSS an exponential model is considered for the
22 loads, represented behind their distribution transformers,
all equipped with LTCs. Constant reactive power limits have
been considered for generators in CSCOPF and PCOPF, but
their values are updated from the more detailed QSSS model.
Participation of generators to frequency control is taken into
account in QSSS, CSCOPF, and PCOPF. QSSS extends over

s and uses a time step of 1 s. Voltage
instability is declared if some transmission voltages reach a low
value of 0.75 p.u., or short-term equilibrium is lost [17].

As regards corrective generation rescheduling, the following
assumptions were made:

1) each generator is able to reschedule linearly, up and down,
50% of its nominal power over one hour;

2) productions start being changed (simultaneously)
s after the contingency occurrence at s;

3) in both CSCOPF and PCOPF, the time horizon of correc-
tive actions varies between 0 (i.e., no corrective action, ex-
cept automatic controls) and s;

4) tolerances for searching and are taken
as s.

B. Case 1: Outage of Line 4022–4031

We start by illustrating step-by-step the proposed procedure
in the case of a single contingency, namely the loss of line
4022–4031 (see Fig. 5).

First, CSCOPF is solved with constraints for that contingency
and with the time horizon of corrective actions set to its max-
imum value s. After setting the system to the
so obtained initial operating point, the contingency is simu-
lated without corrective action. Voltage collapse takes place at

s.
Next, PCOPF is used to compute the minimum corrective

controls ensuring feasibility with the specified time horizon
s. The system response to both the disturbance

and the so determined generation rescheduling, applied from
s on, is determined using QSSS. It is found that the

system loses stability at s, i.e., 316 s later than without
corrective controls. This happens while generation rescheduling
is still taking place, which means that the pace of the latter
should be quickened.

According to the algorithm of Fig. 3, is decreased by steps
of , new corrective actions are determined by PCOPF for
each value of , and QSSS is performed with the so obtained
rescheduling. This sequence is repeated until the system evo-
lution is stabilized. The optimal corrective actions eventually
able to do so correspond to s. At this point, it is found
that the contingency is not binding, since the CSCOPF objective
keeps the same value as in the base case. Hence, no preventive
action is required ( s); corrective controls suffice to
stabilize the system.

Table I provides, for successive time horizons , the genera-
tion rescheduling at PCOPF optimum, together with the QSSS
outcome. Note that while is decreased from 720 to 585 s, the
power corrections of all generators do not change since none of
them is reaching its (decreasing) upper limit. Clearly, to save
computing time, QSSS is called only when corrective controls
change. Note also that in this example the total generation
rescheduling does not increase when is decreased from 585
to 540 s, indicating that generators g16 and g16b are equally
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TABLE I
CASE 1: CORRECTIVE GENERATION CHANGES (IN MW)

GIVEN BY PCOPF FOR � � ��� S

Fig. 6. Case 1: voltage evolution at bus 4047 for various corrective actions.

effective. This results from the fact that they are located very
close to each other (see Fig. 5).

Fig. 6 shows the voltage evolution at bus 4047, experiencing
the largest drop, in three cases: unstable without corrective ac-
tions, marginally unstable with corrective actions corresponding
to s and marginally stable with corrective actions cor-
responding to s. In the latter case, corrective controls
were fast enough to counteract the effect of LTCs and OELs.
Obviously, this cannot be found from PCOPF alone. The latter
provides post-contingency operating points with all voltages in
the requested range ( pu) but the so obtained long-
term equilibria are not all attracting. The results clearly illustrate
the benefit of coupling optimization with time-domain simula-
tion.

C. Case 2: Outage of Line 4041–4044

For this contingency, the successive scenarios checked in the
course of searching a valid optimal combination of preventive
and corrective actions were shown in Fig. 2.

Table II provides the generation change at the PCOPF op-
timum, together with the collapse time, for various values of ,
when is set to s. Note that all these corrective
schemes fail to save (or even extend significantly the survival
of) the system, since generation rescheduling starts at
s while the system collapses at s in the absence of
corrective actions. However, from the PCOPF perspective, the
results confirm that the smaller the amount of power available
for rescheduling, the higher the number of rescheduled genera-
tors and the higher the total generation shift.

As seen from Fig. 2, the iterations stopped for s
owing to the divergence of the PCOPF algorithm, indicating
that the available corrective actions are insufficient to ensure

TABLE II
CASE 2: CORRECTIVE GENERATION CHANGES (IN MW)

GIVEN BY PCOPF FOR � � ��� S

post-contingency feasibility. Therefore, the pre-contingency op-
erating point must be modified by specifying in CSCOPF a time
horizon smaller than s.

The preventive actions determined by CSCOPF for the
successive values of determined by the bisection search are
shown in Table III, together with the diagnosis from QSSS. In
all cases, no corrective action was considered. For
s and s, no preventive action is taken, the CSCOPF
optimum being the same as in the pre-contingency situation.
The next point checked by the bisection method is
s, as shown in Fig. 2. For this value of the pre-contingency
rescheduling is still insufficient: the collapse time is increased
by 18 s only, and no corrective rescheduling is able to restore
stability. On the other hand, for s, the system is stable
without corrective actions. Note that the large number of control
changes could be reduced, at the detriment of operation cost,
by re-running CSCOPF with the small changes inhibited.

The last value checked by bisection is s, where
combined pre- and post-contingency reschedulings succeed
restoring voltage stability. The corresponding generation
changes determined by PCOPF are given in Table IV for var-
ious values of , with set to 135 s. The system is marginally
stable for s. Again, these results demonstrate the
benefit of rescheduling more generators at the same time.

From Tables III and IV it results that the optimal trade-off of
preventive and corrective controls corresponds to
s and s, respectively.

The time evolution of the voltage at bus 4046, experiencing
the largest post-contingency drop, is shown in Fig. 7, for two
operating points stemming from CSCOPF and corresponding to

s and s, respectively. In both cases
the curves with and without corrective actions are provided. For

s, they are almost indiscernible due to the little time
left for corrective actions.

D. Case 3: Outage of Line 4011–4021

This line outage is more severe in the sense that without
rescheduling the system collapses only 41 s after the dis-
turbance is applied. This does not leave time to correctively
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TABLE III
CASE 2: PREVENTIVE GENERATION CHANGES (IN MW)

GIVEN BY CSCOPF (NO CORRECTIVE ACTION)

TABLE IV
CASE 2: CORRECTIVE GENERATION CHANGES (IN MW)

GIVEN BY PCOPF FOR � � ��� S

Fig. 7. Case 2: voltage evolution at bus 4046 for four combinations of preven-
tive and corrective actions.

reschedule generators and hence some preventive actions are
needed to secure the system.

The preventive generation changes determined by CSCOPF
are given in Table V, for the successive values of chosen by

TABLE V
CASE 3: PREVENTIVE GENERATION CHANGES (IN MW)

GIVEN BY CSCOPF (NO CORRECTIVE ACTION)

the bisection method and in the absence of any corrective ac-
tion. For comparison purposes, the last column shows the values
provided by CSCOPF when setting , i.e., when relying
on preventive actions only. As expected, this leads to a higher
rescheduling. The optimal value is s and as a matter
of fact it does not require corrective actions, the post-contin-
gency system evolution being voltage stable with preventive
controls only.

Fig. 8 shows the evolution of the voltage at bus 4022, for the
five combinations in Table V. As expected, with the preventive
controls corresponding to , the voltage settles at a higher
value than with the controls corresponding to s. It can
be also seen that, the smaller the horizon , the stronger the
preventive actions and the later the collapse time. Finally, note
that for s the system collapses before corrective actions
can be launched.

E. Case 4: Stabilizing Several N-1 Contingencies

In this last example, the algorithm of Fig. 4 is used to control
a set of 37 N-1 contingencies.

First, CSCOPF is solved with all contingencies included and
set to s for each of them. At the so obtained

CSCOPF solution, each contingency is simulated with QSSS
without corrective action. Seven contingencies are found to
cause voltage instability. They are listed in Table VI with the
collapse time shown in the column labeled “iteration 1”.

Next, optimal corrective actions are determined for each of
the seven contingencies by the algorithm of Fig. 3. This compu-
tation can be skipped for the first three contingencies since the
system collapses before any corrective action can be launched.
It is found to also fail for the next two contingencies due to in-
sufficient time left to corrective actions to save the system. The
last two can be stabilized.
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Fig. 8. Case 3: voltage evolution at bus 4022 for various preventive actions.

TABLE VI
CASE 4: RESULTS OF CSCOPF AND QSSS

Thus, the first five contingencies require preventive changes
in system operating point. To this purpose, for each contingency,
the time horizon is searched using the algorithm of Fig. 3.
The results are given in the column of Table VI labeled “iter-
ation 2”. For the last two contingencies, s since
there exist corrective actions saving the system (the same holds
true for the remaining 30 contingencies which are stable even
without corrective actions).

Finally, CSCOPF is solved again using the individually com-
puted time horizons . A new optimal operating point is ob-
tained as a trade-off between two contingencies: the outage of
lines 4021–4042 and 4032–4044, respectively. Table VII shows
the preventive actions needed to stabilize each of the two contin-
gencies separately, and both simultaneously. The results show
an expected compromise of preventive actions to handle both
contingencies; the main differences between the three produc-
tion schemes appear on generators g8, g11, g12, g14, g15, g15b,
g16, and g20.

VI. CONCLUSION

Static preventive-corrective optimizations cannot account for
the speed at which post-contingency corrective actions are ap-
plied. It may happen that the post-contingency system evolu-
tion is voltage unstable because the statically computed correc-
tive controls are not acting fast enough even when applied at the
maximum allowed rate.

To handle such situations in the case of long-term voltage sta-
bility, an approach coupling static optimization with time-do-
main simulation has been proposed. By adjusting the time hori-
zons in CSCOPF and PCOPF, it yields a valid optimal com-
bination of preventive and corrective actions such that, if any
of the postulated contingencies occurs, by applying CSCOPF-

TABLE VII
CASE 4: GENERATION CHANGES (IN MW) GIVEN BY CSCOPF

based preventive actions and PCOPF-based corrective actions,
the system will be able to reach the feasible state determined by
optimization (which may include limits on voltage magnitudes
and branch currents as well).

The proposed formulation has been successfully tested on
cases where generation rescheduling is used to counteract
voltage instability. The so determined corrective actions should
be implemented through an automatic system protection
scheme, avoiding the delays introduced by operator interven-
tions.

The approach is computationally intensive (especially if de-
tailed time-domain simulation is used) but it could be signif-
icantly speeded up by distributing the coupled PCOPF-QSSS
sub-problems relative to different contingencies over different
processors [4], [21].

APPENDIX

Let , and be the number of: buses, generators, trans-
formers with controllable ratio, and shunts, respectively. We for-
mulate the CSCOPF problem (1)–(4) with voltages expressed in
rectangular coordinates

We use generator active powers, generator terminal voltages,
controllable transformer ratios, and shunt reactances as control
variables.

The objective function (1) is the minimum generation cost

Constraints (2) encompass the active and reactive power flow
equations, written for each bus and each system
configuration
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where is the set of neighbor buses of bus in state , other
notations being self-explanatory.

Constraints (3) include operational limits on branch currents
and voltage magnitudes

and physical limits of power system devices

Although not shown explicitly, the variable intervenes in the
CSCOPF formulation through the terms and

, while intervenes through the term only.
Finally, the coupling constraints (4) take on the form
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