Lamy, Cédric ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Scuvée-Moreau, Jacqueline ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie - Département des sciences biomédicales et précliniques
Dilly, Sébastien ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Liégeois, Jean-François ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Language :
English
Title :
The sigma agonist 1,3-di-o-tolylguanidine directly blocks SK channels in dopaminergic neurons and in cell lines
Aydar E., Palmer C.P., Klyachko V.A., Jackson M.B. The Sigma receptors as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002, 34:399-410.
Bastianetto S., Rouquier L., Perrault G., Sanger D.J. DTG-induced circling behaviour in rats may involve the interaction between sigma sites and nigro-striatal dopaminergic pathways. Neuropharmacology 1995, 34:281-287.
Bejanian M., Pechnick R.N., Bova M.P., George R. Effects of subcutaneous and intracerebroventricular administration of the sigma receptor ligand 1,3-Di-o-tolylguanidine on body temperature in the rat: interactions with BMY 14802 and rimcazole. J. Pharmacol. Exp. Ther. 1991, 258:88-93.
Bildl W., Strassmaier T., Thurm H., Andersen J., Eble S., Oliver D., Knipper M., Mann M., Schulte U., Adelman J.P., Fakler B. Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 2004, 43:847-858.
Blank T., Nijholt I., Kye M.J., Spiess J. Small conductance Ca2+-activated K+ channels as targets of CNS drug development. Curr. Drug Targets CNS Neurol. Disord. 2004, 3:161-167.
Bouchard P., Quirion R. [3H]1, 3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigma2 receptor subtypes. Neuroscience 1997, 76:467-477.
Boussif O., Lezoualc'h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 1995, 92:7297-7301.
Ceci A., Smith M., French E.D. Activation of the A10 mesolimbic system by the sigma-receptor agonist (+)-SKF10047 can be blocked by rimcazole, a novel putative antipsychotic. Eur. J. Pharmacol. 1988, 154:53-57.
Debonnel G. Current hypotheses on Sigma receptors and their physiological role: possible implications in psychiatry. J. Psychiatry Neurosci. 1993, 18:157-172.
DeHaven-Hudkins D.L., Fleissner L.C. Competitive interactions at [3H]1,3-di(2-tolyl)guanidine (DTG)-defined sigma recognition sites in guinea pig brain. Life Sci. 1992, 50:PL65-PL70.
Engberg G., Wikstrom H. Sigma-receptors: implication for the control of neuronal activity of nigral dopamine-containing neurons. Eur. J. Pharmacol. 1991, 201:199-202.
Faber E.S. Functions and modulation of neuronal SK channels. Cell Biochem. Biophys. 2009, 55:127-139.
Fletcher E.J., Church J., Abdel-Hamid K., MacDonald J.F. Selective reduction of N-methyl-D-aspartate-evoked responses by 1, 3-di(2-tolyl)guanidine in mouse and rat cultured hippocampal pyramidal neurones. Br. J. Pharmacol. 1993, 109:1196-1205.
Galligan J.J., Campbell B.G., Kavanaugh M.P., Weber E., North R.A. 1, 3-Di(2-tolyl)guanidine blocks nicotinic response in guinea pig myenteric neurons. J. Pharmacol. Exp. Ther. 1989, 251:169-174.
Goldberg J.A., Wilson C.J. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J. Neurosci. 2005, 25:10230-10238.
Gonzalez G.M., Werling L.L. Release of [3H]dopamine from guinea pig striatal slices is modulated by sigma1 receptor agonists. Naunyn-Schmiedebergs Arch. Pharmacol. 1997, 356:455-461.
Hallworth N.E., Wilson C.J., Bevan M.D. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J. Neurosci. 2003, 23:7525-7542.
Hanner M., Moebius F.F., Flandorfer A., Knaus H.G., Striessnig J., Kempner E., Glossmann H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:8072-8077.
Hayashi T., Su T.P. The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci. 2005, 77:1612-1624.
Hayashi T., Su T.P. Promoting the expression of anti-apoptotic Bcl-2: roles of endoplasmic reticulum protein sigma-1 receptor. Abstract 168.2 2007 Neuroscience Meeting, San Diego, CA 2007.
Hayashi T., Su T.P., Kagaya A., Nishida A., Shimizu M., Yamawaki S. Neuroleptics with differential affinities at dopamine D2 receptors and sigma receptors affect differently the N-methyl-D-aspartate-induced increase in intracellular calcium concentration: involvement of protein kinase. Synapse 1999, 31:20-28.
Hilal S., Karickhoff S.W., Carreira L.A. A rigorous test for SPARC's chemical reactivity models: estimation of more than 4300 ionization pKas. Quant. Struct.-Act. Relat. 1995, 14:348-355.
Hugues M., Romey G., Duval D., Vincent J.P., Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl. Acad. Sci. U. S. A. 1982, 79:1308-1312.
Katnik C., Guerrero W.R., Pennypacker K.R., Herrera Y., Cuevas J. Sigma-1 receptor ativation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J. Pharmacol. Exp. Ther. 2006, 319:1355-1365.
Kohler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 1996, 273:1709-1714.
Liégeois J.-F., Mercier F., Graulich A., Graulich-Lorge F., Scuvée-Moreau J., Seutin V. Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr. Med. Chem. 2003, 10:625-647.
Mach R.H., Huang Y., Freeman R.A., Wu L., Vangveravong S., Luedtke R.R. Conformationally-flexible benzamide analogues as dopamine D3 and σ2 receptor ligands. Bioorg. Med. Chem. Lett. 2004, 14:195-202.
Martina M., Turcotte M.E., Halman S., Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J. Physiol. 2007, 578:143-157.
Matsumoto R.R., Bowen W.D., Tom M.A., Vo V.N., Truong D.D., De Costa B.R. Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma receptor antagonism. Eur. J. Pharmacol. 1995, 280:301-310.
Maurice T., Phan V.L., Noda Y., Yamada K., Privat A., Nabeshima T. The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (sigma) receptor ligands involves both sigma1 and sigma2 sites. Br. J. Pharmacol. 1999, 127:335-342.
Minabe Y., Matsuno K., Ashby C.R. Acute and chronic administration of the selective sigma1 receptor agonist SA4503 significantly alters the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse 1999, 33:129-140.
Moison D., De Deurwaerdère P., Cagnotto A., Marrazzo A., Prezzavento O., Ronsisvalle G., Mennini T., Spampinato U. Intrastriatal administration of sigma ligands inhibits basal dopamine release in vivo. Neuropharmacology 2003, 45:945-953.
Monnet P.F. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol. Cell 2005, 97:873-883.
Monnet F.P., Debonnel G., Junien J.L., De Montigny C. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur. J. Pharmacol. 1990, 179:441-445.
Nguyen V.H., Ingram S.L., Kassiou M., Christie M.J. Sigma-binding site ligands inhibit K+ currents in rat locus coeruleus neurons in vitro. Eur. J. Pharmacol. 1998, 361:157-163.
Pedarzani P., Mosbacher J., Rivard A., Cingolani L.A., Oliver D., Stocker M., Adelman J.P., Fakler B. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 2001, 276:9762-9769.
Peitersen T., Hougaard C., Jespersen T., Jorgensen N.K., Olesen S.P., Grunnet M. Subtype-specific, bi-component inhibition of SK channels by low internal pH. Biochem. Biophys. Res. Commun. 2006, 343:943-949.
Rothman R.B., Reid A., Mahboubi A., Kim C.H., De Costa B.R., Jacobson A.E., Rice K.C. Labeling by [3H]1, 3-Di(2-tolyl)guanidine of two high affinity binding sites in Guinea pig brain: evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands. Mol. Pharmacol. 1990, 39:222-232.
Sah P. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 1996, 19:150-154.
Scuvée-Moreau J., Liégeois J.-F., Massotte L., Seutin V. Methyl-laudanosine: a new pharmacological tool to investigate the function of small-conductance Ca2+-activated K+ channels. J. Pharmacol. Exp. Ther. 2002, 302:1176-1183.
Scuvée-Moreau J., Boland A., Graulich A., Van Overmeire L., D'Hoedt D., Graulich-Lorge F., Thomas E., Abras A., Stocker M., Liégeois J.-F., Seutin V. Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices. Br. J. Pharmacol. 2004, 143:753-764.
Seutin V., Scuvée-Moreau J., Dresse A. Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. Neuropharmacology 1997, 36:1653-1657.
Seutin V., Mkahli F., Massotte L., Dresse A. Calcium release from internal stores is required for the generation of spontaneous hyperpolarizations in dopaminergic neurons of neonatal rats. J. Neurophysiol. 2000, 83:192-197.
Shepard P.D., Bunney B.S. Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp. Brain Res. 1991, 86:141-150.
Soh H., Park C.S. Localization of divalent cation-binding site in the pore of a small conductance Ca2+-activated K+ channel and its role in determining current-voltage relationship. Biophys. J. 2002, 83:2528-2538.
Stocker M., Pedarzani P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci. 2000, 15:476-493.
Su T.P., Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr. Med. Chem. 2003, 10:2073-2080.
Vilner B.J., Bowen W.D. Modulation of cellular calcium by sigma-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells. J. Pharmacol. Exp. Ther. 2000, 292:900-911.
Walker J.M., Bowen W.D., Walker F.O., Matsumoto R.R., De Costa B., Rice K.C. Sigma receptors: biology and function. Pharmacol. Rev. 1990, 42:355-402.
Waroux O., Massotte L., Alleva L., Graulich A., Thomas E., Liégeois J.-F., Scuvée-Moreau J., Seutin V. SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur. J. Neurosci. 2005, 22:3111-3121.
Wilke R.A., Lupardus P.J., Grandy D.K., Rubinstein M., Low M.J., Jackson M.B. K+ channel modulation in rodent neurohypophysial nerve terminals by sigma receptors and not by dopamine receptors. J. Physiol. 1999, 517(Pt 2):391-406.
Wolfart J., Roeper J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J. Neurosci. 2002, 22:3404-3413.
Wolfart J., Neuhoff H., Franz O., Roeper J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 2001, 21:3443-3456.
Womack M.D., Chevez C., Khodakhah K. Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons. J. Neurosci. 2004, 24:8818-8822.
Xia X.M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998, 395:503-507.
Zhang J., Chiodo L.A., Wettstein J.G., Junien J.L., Freeman A.S. Acute effects of sigma ligands on the electrophysiological activity of rat nigrostriatal and mesoaccumbal dopaminergic neurons. Synapse 1992, 11:267-278.