[en] Numerical simulations of gas flow between two sheets of plastic MellapakTM 250 Y are performed using Lattice Boltzmann methods in laminar and turbulent regimes. Results are compared with experimental measurements and with known correlations. They are also compared with simulations using a classical CFD code. In all cases, the agreement is very good.
Research Center/Unit :
Laboratoire de Génie Chimique
Disciplines :
Chemical engineering
Author, co-author :
Beugre, Djomice
Calvo, Sébastien ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires
Crine, Michel ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires
Toye, Dominique ; Université de Liège - ULiège > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques
Marchot, Pierre ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Systèmes polyphasiques
Language :
English
Title :
Gas Flow Simulations in a Structured Packing by Lattice Boltzmann Method
Alternative titles :
[fr] Simulation des écoulements monophasiques de gaz dans un empilage structuré par la méthode des réseaux de Boltzmann
Publication date :
2011
Journal title :
Chemical Engineering Science
ISSN :
0009-2509
eISSN :
1873-4405
Publisher :
Elsevier, United Kingdom
Volume :
66
Pages :
3742-3752
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
ARC - Actions de recherche concertées; Techniques expérimentales avancées et modélisation par automates cellulaire de systèmes multiphasiques : Application aux colonnes de distillation et de distillation réactive
Commentary :
To our knowledge, it is the first time that the Lattice Boltzmann method is used in this
kind of simulations.
An original analysis of the flow profiles in the channels is presented. Numerical results
compare very well to similar simulations performed using a classical CFD code.
Simulated pressure drops between two sheets, agree fairly well with experimental data
and with the correlation of Stichlmair developed for Mellapack 250Y packings containing
many sheets.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Benzi R., Succi S., Vergassola M. The lattice Boltzmann equation theory and applications. Phys. Rep. 1992, 222:145-197.
Beugre D., Calvo S., Dethier G., Crine M., Toye D., Marchot P. Lattice Boltzmann 3d flow simulations on a metallic foam. J. Comput. Appl. Math. 2010, 234:2128-2134.
Bhatnagar P.L., Gross E.P., Krook M. A model for collision process in gases. i. Small amplitude process in charged and neutral one-component systems. Phys. Rev. 1954, 94(511).
Bravo, J.L., Rocha, J.A., Fair, J.R., 1986. Pressure drop in structured packing. Hydrocarbon Proc. 56 (45).
Bravo, J.L., Rocha, J.A., Fair, J.R., 1992. A comprehensive model for the performance of columns containing structured packings. Inst. Chem. Eng. Symp. Ser. 128 (A489).
Brunazzi, E., Paglianti, A., 1997. Mechanistic pressure drop model for columns containing structured packings. A.I.Ch.E. J. 43 (2).
Calvo, S., 2010. Caractérisation de l'hydrodynamique des écoulements Gaz-Liquide à contre-courant dans une rectangulaire à empilage. Ph.D. Thesis, University of Liège.
Chen H., Chen S., Matthaeus W.H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 1992, 45. (R5339).
Dethier, G., Briquet, C., Marchot, P., de Marneffe, P.A., 2007. A grid enabled lattice Boltzmann based modelling system. In: Proceedings of the PPAM, Gdansk, Poland.
d'Humiéres D. Generalized lattice Boltzmann equations. Rarefied Gas Dynamics 1992, vol. 159:450-458. AIAA, Washington, DC.
d'Humiéres D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.-S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Proc. R. Soc. London. Ser. A 2002, 360:437.
Dupuis, A., 2002. From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river. Ph.D. Thesis, University of Geneva.
Fernandes J., Simoes P.C., Mota J.P.B., Saatdjian E. Application of CFD in the study of supercritical fluid extraction with structured packing: dry pressure drop calculations. J. Supercritical Fluids 2008, 47:17-24.
Fernandes J., Lisboa P.F., Simoes P.C., Mota J.P.B., Saatdjian E. Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations. J. Supercritical Fluids 2009, 50:61-68.
Higuera, F.J., Jiménez, J., 1989. Boltzmann approach to lattice gas simulations. Europhys. Lett. 9 (663).
Inamuro T., Yoshino M., Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids 1995, 7:2928-2930.
Khosravi Nikou M.R., Ehsani M.R. Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. Int. Commun. Heat Mass Transfer 2008, 35:1211-1219.
Krafczyk M., Tölke J. Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Modern Phys. B 2003, 17:33-39.
Lallemand P., Luo L.-S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance and stability. Phys. Rev. Lett. E 2000, 61:6546-6562.
McNamara G., Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 1988, 61(2332).
Petre C.F., Larachi F., Iliuta I., Grandjean B.P.A. Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD. Chem. Eng. Sci. 2003, 58:163-177.
Raynal L., Royon-Lebeaud A. A multi-scale approach for CFD calculations of gas-liquid flow within large size column equipped with structured packing. Chem. Eng. Sci. 2007, 62:7196-7204.
Robbins L.A. Improve pressure-drop prediction with a new correlation. Chem. Eng. Prog. 1991, 87(87).
Rocha J.A., Bravo J.L., Fair J.R. Distillation columns containing structured packings: a comprehensive model for their performance. i. Hydraulic models. Ind. Eng. Chem. Res. 1993, 32(641).
Smagorinsky J. General circulation experiments with the primitive equations: I. The basic equations. Mon. Weather Rev. 1963, 91:99-164.
Spiegel, L., Meier, W.A., 1992. Generalized pressure drop model for packings. Inst. Chem. Eng. Symp.Ser. 128 (B85).
Stichlmair J., Bravo J.L., Fair J.R. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas. Sep. Purif. 1989, 3(19).
Succi S. The Lattice Boltzmann Equation, for Fluid Dynamics and Beyond 2001, Oxford University Press.
Sukop M.C., Thorne D.T. Lattice Boltzmann Modeling, an Introduction for Geoscientists and Engineers 2006, Springer.
Yu, D., Mei, R., Luo, L.-S., Shyy, W., 2003. Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39 (329).
Yu H., Luo L.-S., Girimaji S.S. LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput. Fluids 2006, 35:957-965.
Zhang P., Liu C.J., Yuan X.G., Yu K.T. On boundary conditions in the lattice Boltzmann model for advection and anistropic dispersion equation. J. Chem. Ind. Eng. (China) 2004, 58:1369-1373.
Ziegler D.P. Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 1993, 71:1171-1177.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.