[en] Glass transition phenomena applied to powdered amorphous food carbohydrates. During these last fifteen years, some food technologists and scientists have become aware of the importance of the glass transition, a thermal property of glassy or amorphous material, in food preparation processes. Recent studies have successfully correlated this fundamental notion to technofunctional changes within the powder. The aim of this paper is to present in a non exhaustive manner the relationship between glass transition characteristics and applications in food technology (caking, alterations, etc.).
Aguilera J.M., del Valle J.M. & Karel M., 1995. Caking phenomena in amorphous food powders. Trends Food Sci. Technol., 6(5), 149-155.
Angell C.A., 1988. Perspective on the glass transition. J. Phys. Chem. Solids, 49, 863-871.
Aref-Azar A., Arnoux F., Biddlestone F. & Hay J.N., 1996. Physical ageing in amorphous and crystalline polymers. Part 2. Polyethylene terephthalate. Thermochim. Acta, 273, 217-229.
Battezzati L., Castellero A. & Rizzi P., 2007. On the glass transition in metallic melts. J. Non-Crystalline Solids, 353, 3318-3326.
Beristain C.I., Azuara E., Tamayo T.T. & Vernon-Carter E.J., 2003. Effect of caking and stickiness on the retention of spray-dried encapsulated orange peel oil. J. Sci. Food Agric., 83, 1613-1616.
Bhandari B.R. & Howes T., 1999. Implication of glass transition for the drying and stability of dried foods. J. Food Eng., 40, 71-79.
Bhandari B.R. & Hartel R.W., 2005. Phase transitions during food powder production and powder stability. In: Onwulata C., ed. Encapsulated and powdered foods. New York, USA: Taylor and Francis, 261-291.
Biliaderis C.G., 1998. Structures and phase transitions of starch polymers. In: Walter R.H., ed. Polysaccharide association structures in food. New York, USA: Dekker, 57-168.
Broadhead J., Rouan Edmond S.K. & Rhodes C.T., 1992. The spray drying of pharmaceuticals. Drug Dev. Ind. Pharm., 18, 1169-1206.
Chung H.J., Lee E.J. & Lim S.T., 2002. Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohydr. Polym., 48, 287-298.
Chung H.J. & Lim S.T., 2004. Physical aging of glassy normal and waxy rice starches. Carbohydr. Polym., 57, 15-21.
Chuy L.E. & Labuza T.P., 1994. Caking and stickiness of dairy-based food powders as related to glass transition. J. Food Sci., 59, 43-46.
Elamin A.A., Alderborn G. & Ahlneck C., 1994. The effect of precompaction processing and storage-conditions on powder and compaction properties of some crystalline materials. Int. J. Pharm., 108, 213-224.
Ferry J.D., 1980. Viscoelastic properties of polymers. 3rd ed. New York, USA: John Wiley & Sons.
Godbillot L. et al., 2006. Analysis of water binding in starch plasticized films. Food Chem., 96, 380-386.
Gordon M. & Taylor J.S., 1952. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem., 2, 493-500.
Hancock B. & Zografi G., 1997. Characteristics and significance of the amorphous state in pharmaceutical system. J. Pharm. Sci., 86, 1-12.
Hill V.L., Craig D.Q.M. & Feely L.C., 1998. Characterization of spray-dried lactose using modulated differential scanning calorimetry. Int. J. Pharm., 161, 95-107.
Hinrichs W.L.J., Prinsen M.G. & Frijlink H.W., 2001. Inulin glasses for the stabilization of therapeutic proteins. Int. J. Pharm., 215, 163-174.
Kim Y.J. et al., 2001. Enthalpy relaxation and glass to rubber transition of amorphous potato starch formed by ball-milling. Carbohydr. Polym., 46, 1-6.
Le Meste M. et al., 2002. Glass transition and food technology: a critical appraisal. J. Food Sci., 67, 2444-2458.
Levine H., 2002. Introduction. Progress in amorphous food and pharmaceutical systems. In: Levine H., ed. Amorphous food and pharmaceutical systems. Cambridge, UK: The Royal Society of Chemistry, 1-8.
Levine H. & Slade L., 1986. A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHP's). Carbohydr. Polym., 6, 213-244.
Liu Y., Bhandari B. & Zhou W., 2006. Glass transition and enthalpy relaxation of amorphous food saccharides: a review. J. Agric. Food Chem., 54, 5701-5717.
Makower B. & Dye W.B., 1956. Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose. J. Agric. Food Chem., 4, 72-77.
Mathlouthi M., 1975. Étude de l'état physique du saccharose après lyophilisation. Ind. Aliment. Agric., 92, 1279-1285.
Mathlouthi M., 1995. Amorphous sugar. In: Mathlouthi M. & Reiser P., eds. Sucrose: properties and applications. London: Blackie Academic and Professional, 75-100.
Mathlouthi M. & Rogé B., 2003. Water vapour sorption isotherms and the caking of food powders. Food Chem., 82, 61-71.
Momany F.A. & Willett J.L., 2002. Molecular dynamics calculations on amylase fragments. I. Glass transition temperatures of maltodecaose at 1, 5, 10 and 15.8% hydration. Biopolymers, 63, 99-110.
Palmer K.J., Dye W.B. & Black D., 1956. X-ray diffractometer and microscopic investigation of crystallization of amorphous sucrose. J. Agric. Food Chem., 4, 77-81.
Peleg M. & Mannheim C.H., 1977. The mechanism of caking of powdered onion. J. Food Process. Preserv., 1, 3-11.
Perez J., 1994. Theories of liquid-glass transition. J. Food Eng., 22, 89-114.
Pittia P. & Sacchettia G., 2008. Antiplasticization effect of water in amorphous foods. A review. Food Chem., 106, 1417-1427.
Quintas L., Brandao T.R.S., Silva C.L.M. & Cunha R.L., 2007. Modelling viscosity temperature dependence of supercooled sucrose solutions - the random-walk approach. J. Phys. Chem. B, 111, 3192-3196.
Rahman M.S., 1999. Glass transition and other structural changes in foods. In: Rahman M.S., ed. Handbook of food preservation. New York, USA: Dekker, 75-93.
Rahman M.S., 2006. State diagram of foods: its potential use in food processing and product stability. Trends Food Sci. Technol., 17, 129-141.
Raudonus J. et al., 2000. Effect of oligomeric or polymeric additives on glass transition, viscosity and crystallization of amorphous isomalt. Food Res. Int., 53, 41-51.
Ronkart S. et al., 2006a. Determination of physical changes of inulin related to sorption isotherms: an X-ray diffraction modulated differential scanning calorimetry and environmental scanning electron microscopy study. Carbohydr. Polym., 63, 210-217.
Ronkart S.N. et al., 2006b. Determination of total water content in inulin using the volumetric Karl Fischer titration. Talanta, 70, 1006-1010.
Ronkart S.N. et al., 2007. Characterization of the physical state of spray-dried inulin. Food Biophys., 2, 83-92.
Ronkart S.N. et al., 2009a. Effect of water uptake on amorphous inulin properties. Food Hydrocolloids, 23, 922-927.
Ronkart S.N. et al., 2009b. Impact of the crystallinity on the physical properties of inulin during water sorption. Food Biophys., 4, 49-58.
Roos Y.H. & Karel M., 1990. Differential scanning calorimetry study of phase transition affecting the quality of dehydrated materials. Biotechnol. Progress, 6, 159-163.
Roos Y.H. & Karel M., 1991. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Progress, 7, 49-53.
Roos Y., 1995. Characterization of food polymers using state diagrams. J. Food Eng., 24, 339-360.
Ruan R., Choi Y.J. & Chung M.S., 2007. Caking in food powders. Food Sci. Biotechnol., 16, 329-336.
Saltmarch M. & Labuza T.P., 1980. Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders. J. Food Sci., 45, 1231-1242.
Schmidt S.J., 2004. Water and solids mobility in foods. Adv. Food Nutr. Res., 48, 1-101.
Senoussi A., Dumoulin E.D. & Berk Z., 1995. Retention of diacetyl in milk during spray-drying and storage. J. Food Sci., 60, 894-905.
Simperler A. et al., 2007. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study. Carbohydr. Res., 342, 1470-1479.
Slade L. & Levine H., 1991. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr., 30, 115-360.
Tammann G., 1926. The states of aggregation. New York, USA: Ed. VanNostrand.
Truong V., Bhandari B.R., Howes T. & Adhikari B., 2002. Analytical model for the prediction of glass transition temperature of food systems. In: Levine H., ed. Amorphous food and pharmaceutical systems. Cambridge, UK: Royal Society of Chemistry, 31-47.
Tsourouflis S., Flink J.M. & Karel M., 1976. Loss of structure in freeze-dried carbohydrates solutions: effect of temperature, moisture content and composition. J. Sci. Food Agric., 27, 509-519.
White G.W. & Cakebread S.H., 1966. The glassy state in certain sugar-containing food products. J. Food Technol., 1, 73-82.
Williams M.L., Landel R.F. & Ferry J.D., 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc., 77, 3701-3707.
Yu L., 2001. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Delivery Rev., 48, 27-42.
Yue Y. & Angell C.A., 2004. Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses. Nature, 427, 717-720.