The Catalytic, Glycosyl Transferase and Acyl Transferase Modules of the Cell Wall Peptidoglycan-Polymerizing Penicillin-Binding Protein 1b of Escherichia Coli
Terrak, Mohammed; Ghosh, Tushar K.; van Heijenoort, Jeanet al.
1999 • In Molecular Microbiology, 34 (2), p. 350-364
[en] The penicillin-binding protein (PBP) 1b of Escherichia coli catalyses the assembly of lipid-transported N-acetyl glucosaminyl-beta-1, 4-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-(L)-meso-diaminopimelyl+ ++- (L)-D-alanyl-D-alanine disaccharide pentapeptide units into polymeric peptidoglycan. These units are phosphodiester linked, at C1 of muramic acid, to a C55 undecaprenyl carrier. PBP1b has been purified in the form of His tag (M46-N844) PBP1bgamma. This derivative provides the host cell in which it is produced with a functional wall peptidoglycan. His tag (M46-N844) PBP1bgamma possesses an amino-terminal hydrophobic segment, which serves as transmembrane spanner of the native PBP. This segment is linked, via an congruent with 100-amino-acid insert, to a D198-G435 glycosyl transferase module that possesses the five motifs characteristic of the PBPs of class A. In in vitro assays, the glycosyl transferase of the PBP catalyses the synthesis of linear glycan chains from the lipid carrier with an efficiency of congruent with 39 000 M-1 s-1. Glu-233, of motif 1, is central to the catalysed reaction. It is proposed that the Glu-233 gamma-COOH donates its proton to the oxygen atom of the scissile phosphoester bond of the lipid carrier, leading to the formation of an oxocarbonium cation, which then undergoes attack by the 4-OH group of a nucleophile N-acetylglucosamine. Asp-234 of motif 1 or Glu-290 of motif 3 could be involved in the stabilization of the oxocarbonium cation and the activation of the 4-OH group of the N-acetylglucosamine. In turn, Tyr-310 of motif 4 is an important component of the amino acid sequence-folding information. The glycosyl transferase module of PBP1b, the lysozymes and the lytic transglycosylase Slt70 have much the same catalytic machinery. They might be members of the same superfamily. The glycosyl transferase module is linked, via a short junction site, to the amino end of a Q447-N844 acyl transferase module, which possesses the catalytic centre-defining motifs of the penicilloyl serine transferases superfamily. In in vitro assays with the lipid precursor and in the presence of penicillin at concentrations sufficient to derivatize the active-site serine 510 of the acyl transferase, the rate of glycan chain synthesis is unmodified, showing that the functioning of the glycosyl transferase is acyl transferase independent. In the absence of penicillin, the products of the Ser-510-assisted double-proton shuttle are glycan strands substituted by cross-linked tetrapeptide-pentapeptide and tetrapeptide-tetrapeptide dimers and uncross-linked pentapeptide and tetrapeptide monomers. The acyl transferase of the PBP also catalyses aminolysis and hydrolysis of properly structured thiolesters, but it lacks activity on D-alanyl-D-alanine-terminated peptides. This substrate specificity suggests that carbonyl donor activity requires the attachment of the pentapeptides to the glycan chains made by the glycosyl transferase, and it implies that one and the same PBP molecule catalyses transglycosylation and peptide cross-linking in a sequential manner. Attempts to produce truncated forms of the PBP lead to the conclusion that the multimodular polypeptide chain behaves as an integrated folding entity during PBP1b biogenesis.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Terrak, Mohammed ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Ghosh, Tushar K.; Université de Liège - ULiège > Centre d'ingénierie des protéines
van Heijenoort, Jean; Université Paris-Sud > Biochimie moléculaire et cellulaire
Van Beeumen, Jozef; Rijksuniversiteit Gent > Laboratorium voor Eiwitbiochemie en Eiwitengineering
Lampilas, Maxime; Hoechst Marion Roussel
Aszodi, Jozsef; Hoechst Marion Roussel
Ayala, Juan A.; Universidad Autonoma (Madrid) > Centro de Biologia Molecular
Ghuysen, Jean-Marie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
The Catalytic, Glycosyl Transferase and Acyl Transferase Modules of the Cell Wall Peptidoglycan-Polymerizing Penicillin-Binding Protein 1b of Escherichia Coli
Adam, M., Damblon, C., Jamin, M., Zorzi, W., Dusart, V., Galleni, M., et al. (1991) Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem J 279: 601-604.
Basu, J., Mahapatra, S., Kundu, M., Mukhopadhyay, S., Nguyen-Distèche, M., Dubois, P., et al. (1996) Identification and overexpression in Escherichia coli of a Mycobacterium leprae gene, pon1, encoding a high-molecular-mass class A penicillin-binding protein, PBP1. J Bacteriol 178: 1707-1711.
Broome-Smith, J.K., Edelman, A., Yousif, S., and Spratt, B.G. (1985) The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding proteins 1A and 1B of Escherichia coli K12. Eur J Biochem 147: 437-446.
Curtis, N.A.C., Orr, D., Ross, G.W., and Boulton, M.G. (1979) Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K12 and their antibacterial activity. Antimicrob Agents Chemother 16: 533-539.
Di Guilmi, A.M., Mouz, N., Andrieu, J.P., Hoskins, J., Jaskunas, S.R., Gagnon, J., et al. (1998) Identification, purification, and characterization of transpeptidase and glycosyltransferase domains of Streptococcus pneumoniae penicillin-binding protein 1a. J Bacteriol 180: 5652-5659.
Edelman, A., Bowler, L, Broome-Srnith, J.K., and Spratt, B.G. (1987) Use of a β-lactamase fusion vector to investigate the organization of penicillin-binding protein 1B in the cytoplasmic membrane of Escherichia coli. Mol Microbiol 1: 101-106.
Fraipont, C., Adam, M., Nguyen-Distèche, M., Keck, W., Van Beeumen, J., Ayala, J.A., et al. (1994) Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli. Biochem J 298: 189-195.
Frère, J.M., Nguyen-Distèche, M., Coyette, J., and Joris, B. (1992) Mode of action: interaction with the penicillin-binding proteins. In The Chemistry of β-Lactams. Page, M.I. (ed.). London: Blackie Academic and Professional, pp. 148-197.
Ghuysen, J.M. (1991) Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45: 37-67.
Glauner, B., Höltje, J.V., and Schwarz, U. (1988) The composition of the murein of Escherichia coli. J Biol Chem 263: 10088-10095.
Goffin, C., and Ghuysen, J.M. (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62: 1079-1093.
Goodell, E.W., Markiewicz, Z., and Schwarz, U. (1983) Absence of oligomeric murein intermediates in Escherichia coli. J Bacteriol 156: 130-135.
Granier, B., Jamin, M., Adam, M., Galleni, M., Lakaye, B., Zorzi, W., et al. (1994) Serine-type D-Ala-D-Ala peptidases and penicillin-binding proteins. Methods Enzymol 244: 249-266.
Hadfield, A.T., Harvey, D.J., Archer, D.B., MacKenzie, D.A., Jeenes, D.J., Radford, S.E., et al. (1994) Crystal structure of the mutant D52S hen egg white lysozyme with an oligosaccharide product. J Mol Biol 243: 856-872.
Hara, H., and Suzuki, H. (1984) A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett 168: 155-160.
van Heijenoort, J. (1996) Murein synthesis. In Escherichia coli and Salmonella. Neidhardt, F.C. (ed.).Washington, DC: American Society for Microbiology Press, pp. 1025-1034.
van Heijenoort, Y., Gomez, M., Derrien, M., Ayala, J., and van Heijenoort, J. (1992) Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP1b and PBP3. J Bacteriol 174: 3549-3557.
Henderson, T.A., Dombrosky, P.M., and Young, K.D. (1994) Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J Bacteriol 176: 256-259.
Höltje, J.V. (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181-203.
Ishino, F., Mitsui, K., Tamaki, S., and Matsuhashi, M. (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem Biophys Res Commun 97: 287-293.
Jamin, M., Adam, M., Damblon, C., Christiaens, L., and Frère, J.M. (1991) Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates. Biochem J 280: 499-506.
Kato, J., Suzuki, H., and Hirota, Y. (1984) Overlapping of the coding regions for α and γ components of penicillin-binding protein 1b in Escherichia coli. Mol Gen Genet 196: 449-457.
Kato, J., Suzuki, H., and Hirota, Y. (1985) Dispensability of either penicillin-binding protein 1a or 1b involved in the essential process for cell elongation in Escherichia coli. Mol Gen Genet 200: 272-277.
Lefèvre, F., Rémy, M.H., and Masson, J.M. (1997) Topographical and functional investigation of Escherichia coli penicillin-binding protein 1b by alanine stretch scanning mutagenesis. J Bacteriol 179: 4761-4767.
Lepage, S., Dubois, P., Ghosh, T.K., Joris, B., Mahapatra, S., Kundu, M., et al. (1997) Dual multimodular class A penicillin-binding proteins in Mycobacterium leprae. J Bacteriol 179: 4627-4630.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.
Malcolm, B.A., Rosenberg, S., Corey, M.J., Allen, J.S., de Baetselier, A., and Kirsch, J.F. (1989) Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc Natl Acad Sci USA 86: 133-137.
Mottl, H., Anderluzzi, D., Kraft, A., and Höltje, J.V. (1995) Towards the enzymology of the transglycosylase reaction: studies on the transglycosylase activity of the penicillin-binding protein 1A of Escherichia coli. In Abstracts of the Symposium on The Envelope In Bacterial Physiology and Antibiotic Action, Garda, Italy, p. 70.
Nakagawa, J., Tamaki, S., Tomioka, S., and Matsuhashi, M. (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. J Biol Chem 259: 13937-13946.
Nguyen-Distèche, M., Ghuysen, J.M., Pollock, J.J., Reynolds, P., Perkins, H.R., Coyette, J., et al. (1974) Enzymes involved in wall peptide crosslinking in Escherichia coli K12 strain 44. Eur J Biochem 41: 447-455.
Nicholas, R.A., Lamson, D.R., and Schultz, D.E. (1993) Penicillin-binding protein 1B from Escherichia coli contains a membrane association site in addition to its transmembrane anchor. J Biol Chem 268: 5632-5641.
Rentier-Delrue, F., Swennen, D., and Martial, J. (1988) pIN-III-ompA secretion vectors: modification of the ompA signal peptide sequence for easier insert cloning. Nucleic Acids Res 16: 8726.
Spratt, B.G., Zhou, J., Taylor, M., and Merrick, M.J. (1996) Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Microbiol 19: 639-647.
Stark, M.J.R. (1987) Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene 51: 255-267.
Suzuki, H., Nishimura, Y., and Hirota, Y. (1978) On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci USA 75: 664-668.
Suzuki, H., van Heijenoort, Y., Tamura, T., Mizoguchi, J., Hirota, Y., and van Heijenoort, J. (1980) In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K12. FEBS Lett 110: 245-249.
Thunnissen, A.M.W.H., Isaacs, N.W., and Dijkstra, W. (1995) The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes. Proteins: Struct Funct Genet 22: 245-258.
Wang, C.C., Schultz, D.E., and Nicholas, R.A. (1996) Localization of a putative second membrane association site in penicillin-binding 1B of Escherichia coli. Biochem J 316: 149-156.
Ward, J.B., and Perkins, H.R. (1973) The direction of glycan synthesis in a bacterial peptidoglycan. Biochem J 135: 721-728.