[en] Glioblastoma (GBM) is one of the most aggressive brain tumors. Despite the standard therapy, the survival from diagnosis remains dramatically low, especially due to tumor recurrence. Glioblastoma stem-like cells (GSCs) have been implicated in this tumor relapse, e.g., based on their capacity to escape the tumor and to migrate through the brain via CXCR4-dependent mechanisms. CXCR4 regulates biological features associated with tumor progression, including self-renewal, migration, and radio resistance. Importantly, its expression correlates with severity and poor prognosis of several cancers including GBM. The CXCR4/CXCL12 pathway therefore appears as an interesting potential therapeutic target. We have generated an oncolytic herpes simplex virus (oHSV) expressing HA-P2G, a mutated form of CXCL12 previously described as a CXCR4 competitive inhibitor. We demonstrate that, in vitro, oHSV/P2G impairs human GSC stemness marker expression, self-renewal, and migration. In two orthotopic xenograft murine models, oHSV/P2G intratumor injection limits tumor growth through the brain parenchyma and GSC migration through the corpus callosum. The ability of P2G to interfere with major GSC features demonstrates the interest in considering oHSV/P2G as a promising new therapeutic approach for GBM patients.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
D'arrigo, Paolo ✱; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Dubois, Maxime ✱; Université de Liège - ULiège > GIGA ; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Virology and Immunology
Sanchez Gil, Judith ; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Virology and Immunology
Lassence, Cédric ; Université de Liège - ULiège > Département des sciences de la vie ; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Virology and Immunology
Hego, Alexandre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Université de Liège - ULiège > GIGA > GIGA Platforms - Imaging & Flow cytometry
Brouwers, Benoît ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Lombard, Arnaud ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Nervous system disorders and therapy
Rogister, Bernard ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Nervous system disorders and therapy
Neirinckx, Virginie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Université de Liège - ULiège > GIGA > GIGA Neurosciences
Lebrun, Marielle ✱; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie ; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Virology and Immunology
Sadzot, Catherine ✱; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Virology and Immunology
✱ These authors have contributed equally to this work.
Language :
English
Title :
An oncolytic herpesvirus expressing a CXCR4 antagonist interferes with glioblastoma cells' stemness features and migration.
ULiège - University of Liège Fonds Léon Fredericq F.R.S.-FNRS - Fund for Scientific Research
Funding text :
D.P. and S.G.J. have benefited respectively from a postdoctoral and doctoral fellowship from TELEVIE-FNRS, Belgium. D.M. is a Research Fellow of the FNRS, Belgium. This work was supported by grants from the National Fund for Scientific Research (FNRS, T\u00E9l\u00E9vie); the Special Funds of the University of Li\u00E8ge ; and the Leon Fredericq Foundation , Li\u00E8ge, Belgium. The authors would like to thank Prof. A. Chiocca ( Brigham and Women's Hospital , Boston, MA, USA) for fHsvQuik-1 BAC; C. Desmet (GIGA, University of Li\u00E8ge) for his help for R-statistical analysis; and all the members of the GIGA Viral Vector, Imaging and Flow Cytometry, Genomics platforms, and animal facilities for valuable technical support. We warmly thank Adeline Deward ( www.illuminesciences.be ) for the graphical abstract.
Abedi, A.A., Grunnet, K., Christensen, I.J., Michaelsen, S.R., Muhic, A., Møller, S., Hasselbalch, B., Poulsen, H.S., Urup, T., A Prognostic Model for Glioblastoma Patients Treated With Standard Therapy Based on a Prospective Cohort of Consecutive Non-Selected Patients From a Single Institution. Front. Oncol., 11, 2021, 597587, 10.3389/fonc.2021.597587.
Goenka, A., Tiek, D., Song, X., Huang, T., Hu, B., Cheng, S.Y., The many facets of therapy resistance and tumor recurrence in glioblastoma. Cells, 10, 2021, 484, 10.3390/cells10030484.
Goffart, N., Kroonen, J., Di Valentin, E., Dedobbeleer, M., Denne, A., Martinive, P., Rogister, B., Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro Oncol. 17 (2015), 81–94, 10.1093/neuonc/nou144.
Goffart, N., Lombard, A., Lallemand, F., Kroonen, J., Nassen, J., Di Valentin, E., Berendsen, S., Dedobbeleer, M., Willems, E., Robe, P., et al. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol. 19 (2017), 66–77, 10.1093/neuonc/now136.
Piccirillo, S.G., Spiteri, I., Sottoriva, A., Touloumis, A., Ber, S., Price, S.J., Heywood, R., Francis, N.J., Howarth, K.D., Collins, V.P., et al. Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone. Cancer Res. 75 (2015), 194–202, 10.1158/0008-5472.CAN-13-3131.
Lara-Velazquez, M., Al-Kharboosh, R., Jeanneret, S., Vazquez-Ramos, C., Mahato, D., Tavanaiepour, D., Rahmathulla, G., Quinones-Hinojosa, A., Advances in brain tumor surgery for glioblastoma in adults. Brain Sci., 7, 2017, 166, 10.3390/brainsci7120166.
Shi, Y., Riese, D.J., Shen, J., The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front. Pharmacol., 11, 2020, 574667, 10.3389/fphar.2020.574667.
Gatti, M., Pattarozzi, A., Bajetto, A., Würth, R., Daga, A., Fiaschi, P., Zona, G., Florio, T., Barbieri, F., Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology 314 (2013), 209–220, 10.1016/j.tox.2013.10.003.
Richardson, P.J., CXCR4 and Glioblastoma. Anti Cancer Agents Med. Chem. 16 (2015), 59–74, 10.2174/1871520615666150824153032.
Stevenson, C.B., Ehtesham, M., McMillan, K.M., Valadez, J.G., Edgeworth, M.L., Price, R.R., Abel, T.W., Mapara, K.Y., Thompson, R.C., CXCR4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 63 (2008), 560–570, 10.1227/01.NEU.0000324896.26088.EF.
Isci, D., D'uonnolo, G., Wantz, M., Rogister, B., Lombard, A., Chevigné, A., Szpakowska, M., Neirinckx, V., Patient-oriented perspective on chemokine receptor expression and function in glioma. Cancers, 14, 2021, 130, 10.3390/cancers14010130.
Li, X., Kim, H.J., Yoo, J., Lee, Y., Nam, C.H., Park, J., Lee, S.-T., Kim, T.M., Choi, S.H., Won, J.-K., et al. Distant origin of glioblastoma recurrence: neural stem cells in the subventricular zone serve as a source of tumor reconstruction after primary resection. Mol. Cancer, 24, 2025, 64, 10.1186/s12943-025-02273-2.
Alghamri, M.S., Banerjee, K., Mujeeb, A.A., Mauser, A., Taher, A., Thalla, R., McClellan, B.L., Varela, M.L., Stamatovic, S.M., Martinez-Revollar, G., et al. Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS Nano 16 (2022), 8729–8750, 10.1021/acsnano.1c07492.
Luo, Z., Wang, B., Chen, Y., Liu, H., Shi, L., Novel CXCR4 Inhibitor CPZ1344 Inhibits the Proliferation, Migration and Angiogenesis of Glioblastoma. Pathol. Oncol. Res. 26 (2020), 2597–2604, 10.1007/s12253-020-00827-x.
Huynh, C., Dingemanse, J., Meyer zu Schwabedissen, H.E., Sidharta, P.N., Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol. Res., 161, 2020, 105092, 10.1016/j.phrs.2020.105092.
Crump, M.P., Gong, J.H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J.L., Baggiolini, M., Sykes, B.D., Clark-Lewis, I., Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 16 (1997), 6996–7007, 10.1093/emboj/16.23.6996.
Williams, S.A., Harata-Lee, Y., Comerford, I., Anderson, R.L., Smyth, M.J., McColl, S.R., Multiple functions of CXCL12 in a syngeneic model of breast cancer. Mol. Cancer, 9, 2010, 250, 10.1186/1476-4598-9-250.
Neklyudova, O., Arlt, M.J.E., Brennecke, P., Thelen, M., Gvozdenovic, A., Kuzmanov, A., Robl, B., Botter, S.M., Born, W., Fuchs, B., Altered CXCL12 expression reveals a dual role of CXCR4 in osteosarcoma primary tumor growth and metastasis. https://doi.org/10.1007/s00432-016-2185-5, 2016.
Kardani, K., Sanchez Gil, J., Rabkin, S.D., Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front. Cell. Infect. Microbiol., 13, 2023, 1206111, 10.3389/fcimb.2023.1206111.
Maruyama, Y., Sakurai, A., Noda, S., Fujiwara, Y., Okura, N., Takagi, T., Asano, J., Honda, F., Regulatory Issues: PMDA - Review of Sakigake Designation Products: Oncolytic Virus Therapy with Delytact Injection (Teserpaturev) for Malignant Glioma. Oncologist 28 (2023), 664–670, 10.1093/oncolo/oyad041.
Kroonen, J., Nassen, J., Boulanger, Y.G., Provenzano, F., Capraro, V., Bours, V., Martin, D., Deprez, M., Robe, P., Rogister, B., Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection. Int. J. Cancer 129 (2011), 574–585, 10.1002/ijc.25709.
Wakimoto, H., Kesari, S., Farrell, C.J., Curry, W.T., Zaupa, C., Aghi, M., Kuroda, T., Stemmer-Rachamimov, A., Shah, K., Liu, T.C., et al. Human glioblastoma-derived cancer stem cells: Establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 69 (2009), 3472–3481, 10.1158/0008-5472.CAN-08-3886.
Iannello, A., Debbeche, O., El Arabi, R., Samarani, S., Hamel, D., Rozenberg, F., Heveker, N., Ahmad, A., Herpes simplex virus type 1-induced FasL expression in human monocytic cells and its implications for cell death, viral replication, and immune evasion. Viral Immunol. 24 (2011), 11–26, 10.1089/vim.2010.0083.
Jackson, M., Hassiotou, F., Nowak, A., Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36 (2015), 177–185, 10.1093/carcin/bgu243.
Shaheen, S., Ahmed, M., Lorenzi, F., Nateri, A.S., Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev. Rep. 12 (2016), 492–499, 10.1007/s12015-016-9664-6.
Volovetz, J., Berezovsky, A.D., Alban, T., Chen, Y., Lauko, A., Aranjuez, G.F., Burtscher, A., Shibuya, K., Silver, D.J., Peterson, J., et al. Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells. Cell Death Dis., 11, 2020, 152, 10.1038/s41419-020-2342-2.
Lombard, A., Isci, D., Reuter, G., Di Valentin, E., Hego, A., Martin, D., Rogister, B., Neirinckx, V., Development of an intraventricular adeno-associated virus-based labeling strategy for glioblastoma cells nested in the subventricular zone. Neurooncol. Adv., 6, 2024, vdae161, 10.1093/noajnl/vdae161.
Lombard, A., Digregorio, M., Delcamp, C., Rogister, B., Piette, C., Coppieters, N., The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Front. Oncol., 10, 2020, 614930, 10.3389/fonc.2020.614930.
Würth, R., Bajetto, A., Harrison, J.K., Barbieri, F., Florio, T., CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci., 8, 2014, 144, 10.3389/fncel.2014.00144.
Ongprakobkul, N., Ishida, Y., Hatano-Sato, K., Li, K., Petdachai, S., Usumi-Fujita, R., Hosomichi, J., Mahatumarat, K., Ono, T., Effects of local vs systemic administration of CXCR4 inhibitor AMD3100 on orthodontic tooth movement in rats. Am. J. Orthod. Dentofacial Orthop. 162 (2022), 182–192, 10.1016/j.ajodo.2021.03.018.
Xiong, Y., Sun, M., Yang, Q., Zhang, W., Song, A., Tan, Y., Mao, J., Liu, G., Xue, P., Nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Acta Biomater. 194 (2025), 38–57, 10.1016/j.actbio.2025.01.050.
Gregory, J.V., Kadiyala, P., Doherty, R., Cadena, M., Habeel, S., Ruoslahti, E., Lowenstein, P.R., Castro, M.G., Lahann, J., Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat. Commun., 11, 2020, 5687, 10.1038/s41467-020-19225-7.
Wei, R., Li, J., Lin, W., Pang, X., Yang, H., Lai, S., Wei, X., Jiang, X., Yuan, Y., Yang, R., Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics. Acta Biomater. 177 (2024), 414–430, 10.1016/j.actbio.2024.02.007.
Gratpain, V., Mwema, A., Labrak, Y., Muccioli, G.G., van Pesch, V., des Rieux, A., Extracellular vesicles for the treatment of central nervous system diseases. Adv. Drug Deliv. Rev. 174 (2021), 535–552, 10.1016/j.addr.2021.05.006.
Hira, V.V.V., Breznik, B., Vittori, M., Loncq de Jong, A., Mlakar, J., Oostra, R.-J., Khurshed, M., Molenaar, R.J., Lah, T., Van Noorden, C.J.F., Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies. J. Histochem. Cytochem. 68 (2020), 33–57, 10.1369/0022155419878416.
Hira, V.V.V., Van Noorden, C.J.F., Molenaar, R.J., CXCR4 antagonists as stem cell mobilizers and therapy sensitizers for acute myeloid leukemia and glioblastoma?. Biology, 9, 2020, 31, 10.3390/biology9020031.
Lemos de Matos, A., Franco, L.S., McFadden, G., Oncolytic Viruses and the Immune System: The Dynamic Duo. Mol. Ther. Methods Clin. Dev. 17 (2020), 349–358, 10.1016/j.omtm.2020.01.001.
Benencia, F., Courrèges, M.C., Conejo-García, J.R., Mohamed-Hadley, A., Zhang, L., Buckanovich, R.J., Carroll, R., Fraser, N., Coukos, G., HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol. Ther. 12 (2005), 789–802, 10.1016/j.ymthe.2005.03.026.
Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R.H.I., Michielin, O., Olszanski, A.J., Malvehy, J., Cebon, J., Fernandez, E., et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell 170 (2017), 1109–1119.e10, 10.1016/j.cell.2017.08.027.
D'Alterio, C., Buoncervello, M., Ieranò, C., Napolitano, M., Portella, L., Rea, G., Barbieri, A., Luciano, A., Scognamiglio, G., Tatangelo, F., et al. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. J. Exp. Clin. Cancer Res., 38, 2019, 432, 10.1186/s13046-019-1420-8.
Zeng, Y., Li, B., Liang, Y., Reeves, P.M., Qu, X., Ran, C., Liu, Q., Callahan, M.V., Sluder, A.E., Gelfand, J.A., et al. Dual blockade of CXCL12-CXCR4 and PD-1–PD-L1 pathways prolongs survival of ovarian tumor–bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. 33 (2019), 6596–6608, 10.1096/fj.201802067RR.
Wu, A., Maxwell, R., Xia, Y., Cardarelli, P., Oyasu, M., Belcaid, Z., Kim, E., Hung, A., Luksik, A.S., Garzon-Muvdi, T., et al. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J. Neuro Oncol. 143 (2019), 241–249, 10.1007/s11060-019-03172-5.
Jayasingam, S.D., Citartan, M., Thang, T.H., Mat Zin, A.A., Ang, K.C., Ch'ng, E.S., Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front. Oncol., 9, 2019, 1512, 10.3389/fonc.2019.01512.
Fortunato, O., Belisario, D.C., Compagno, M., Giovinazzo, F., Bracci, C., Pastorino, U., Horenstein, A., Malavasi, F., Ferracini, R., Scala, S., et al. CXCR4 Inhibition Counteracts Immunosuppressive Properties of Metastatic NSCLC Stem Cells. Front. Immunol., 11, 2020, 02168, 10.3389/fimmu.2020.02168.
Todo, T., Martuza, R.L., Rabkin, S.D., Johnson, P.A., Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl. Acad. Sci. USA 98 (2001), 6396–6401, 10.1073/pnas.101136398.
Tischer, B.K., Kaufer, B.B., Sommer, M., Wussow, F., Arvin, A.M., Osterrieder, N., A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J. Virol. 81 (2007), 13200–13208, 10.1128/JVI.01148-07.