Energy transition; Long-term energy storage; Massive thermal energy storage; Refrigerant charge; Screw machines; Energy; Energy transitions; Organics; Rankine; Round trip; Thermal energy storage; Renewable Energy, Sustainability and the Environment; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law
Abstract :
[en] Carnot Batteries (CBs) are a promising option for energy storage, acting as a buffer for the variability from renewables and enabling multi-energy integration and dispatch, converting electricity to heat and back to electricity. Although techno-economic studies report promising costs and high feasibility, especially when components from both cycles are shared in long-term storage, there are few prototypes, and the technology readiness level remains near 4. This paper presents a reversible Rankine-based CB designed for integration with an abandoned flooded mine. The system is under construction, being the largest machine of its type. A physics-based model was developed and validated against manufacturer data to assess performance under realistic constraints. The key focus is the role of auxiliaries and temperature-glide control. By actively modulating secondary-loop pump rotational speed, the Organic Rankine Cycle (ORC) achieves up to a 36 % increase in efficiency and the Heat Pump (HP) mode up to 20 % increase in relative efficiency to a constant-glide strategy. Highlighting that no single pair of glide settings is optimal across the full operating envelope, underscoring the need for adaptive control. Neglecting auxiliaries leads to substantial errors: a relative difference of 24 % in round-trip efficiency (RTE) can be achieved when auxiliaries are omitted, resulting in unrealistic performance values and, consequently, an unrealistic feasibility. With auxiliaries and constraints included, the modelled charge–discharge RTE ranges from 22.8 % to 34.7 %, lower than conventional storage but consistent with reported limits for CB technology. However, CBs can also supply industrial heat, reject heat to district heating networks, and/or deliver cooling, making RTE efficiency an incomplete metric for this technology. The analysis indicates that efficiency depends more on operating conditions than on component selection. This highlights that, for CBs connected to low-temperature storage, auxiliary components are decisive for performance. Achieving high efficiency requires water pumps with high part-load efficiency (including both pump and motor), refrigerant pumps capable of high efficiency at low net positive suction head, and the deployment of active control laws governing charge management and pump operation.
Disciplines :
Energy
Author, co-author :
Cendoya, Aitor ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Ransy, Frédéric ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Guo, Bentao ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Hernandez Naranjo, Jairo Andres ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Dumont, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Lemort, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Thermodynamique appliquée
Language :
English
Title :
Design and modelling of a reversible HP/ORC Carnot battery tailored for waste heat integration in flooded mines
HE - 101123556 - WeForming - Buildings as Efficient Interoperable Formers of Clean Energy Ecosystems
Name of the research project :
WEFORMING Buildings as Efficient Interoperable Formers of Clean Energy Ecosystems
Funders :
SPW - Service Public de Wallonie European Union
Funding number :
101123556
Funding text :
The project that produced the results presented in this paper has received funding from the European Union's Horizon Research and Innovation programme under grant agreement No. 10112355 , in the framework of the WeForming project. The authors would also like to acknowledge the funding provided by the Walloon Region of Belgium in the framework of the ARDNrgy project.
United Nations Environment Programme, et al. United Nations Environment Programme, (eds.) Emissions Gap Report 2024: No more hot air … please! With a massive gap between rhetoric and reality, countries draft new climate commitments, 2024, 10.59117/20.500.11822/46404.
Hodge, B.-M., Brancucci Martinez-Anido, C., Wang, Q., Chartan, E., Florita, A., Kiviluoma, J., The combined value of wind and solar power forecasting improvements and electricity storage. Appl Energy 214 (2018), 1–15, 10.1016/j.apenergy.2017.12.120.
Nan, S., Zhou, M., Li, G., Optimal residential community demand response scheduling in smart grid. Appl Energy 210 (2018), 1280–1289, 10.1016/j.apenergy.2017.06.066.
Li, B., Qian, W., Du, X., Study on the retrofit of coupled Carnot battery in retired coal-fired power units for grid energy storage transformation. Appl Energy, 401, 2025, 126796, 10.1016/j.apenergy.2025.126796.
Nitsch, F., Wetzel, M., Gils, H.C., Nienhaus, K., The future role of Carnot batteries in Central Europe: combining energy system and market perspective. J Energy Storage, 85, 2024, 110959, 10.1016/j.est.2024.110959.
Argyrou, M.C., Christodoulides, P., Kalogirou, S.A., Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew Sust Energ Rev 94 (2018), 804–821, 10.1016/j.rser.2018.06.044.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria economic analysis of a pumped thermal electricity storage (PTES) with thermal integration. Front Energy Res, 8, 2020, 53, 10.3389/fenrg.2020.00053.
Sorknæs, P., Thellufsen, J.Z., Knobloch, K., Engelbrecht, K., Yuan, M., Economic potentials of Carnot batteries in 100% renewable energy systems. Energy, 282, 2023, 128837, 10.1016/j.energy.2023.128837.
Killer, M., Farrokhseresht, M., Paterakis, N.G., Implementation of large-scale Li-ion battery energy storage systems within the EMEA region. Appl Energy, 260, 2020, 114166, 10.1016/j.apenergy.2019.114166.
McTigue, J., Hirschey, J., Ma, Z., Advancing pumped thermal energy storage performance and cost using silica storage media. Appl Energy, 387, 2025, 125567, 10.1016/j.apenergy.2025.125567.
Jiang, Y., Su, W., Wu, C., Wang, S., Enhanced thermally integrated Carnot battery using low-GWP working fluid pair: multi-aspect analysis and multi-scale optimization. Appl Energy, 376, 2024, 124226, 10.1016/j.apenergy.2024.124226.
Monie, S.W., Åberg, M., Potential to balance load variability, induced by renewable power, using rock cavern thermal energy storage, heat pumps, and combined heat and power in Sweden. Appl Energy, 343, 2023, 121210, 10.1016/j.apenergy.2023.121210.
Dumont, O., Frate, G.F., Pillai, A., Lecompte, S., De Paepe, M., Lemort, V., Carnot battery technology: a state-of-the-art review. J Energy Storage, 32, 2020, 101756, 10.1016/j.est.2020.101756.
Liang, T., et al. Key components for Carnot battery: technology review, technical barriers and selection criteria. Renew Sust Energ Rev, 163, 2022, 112478, 10.1016/j.rser.2022.112478.
Kurşun, B., Ökten, K., Improving the thermo-economic performance of a pumped thermal electricity storage (PTES) with a hybrid thermal integration scenario consisting of solar energy and waste heat. J Energy Storage, 103, 2024, 114223, 10.1016/j.est.2024.114223.
Vieren, E., et al. The potential of vapor compression heat pumps supplying process heat between 100 and 200 °C in the chemical industry. Energies, 16(18), 2023, 6473, 10.3390/en16186473.
Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., Bertsch, S.S., High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. Energy 152 (2018), 985–1010, 10.1016/j.energy.2018.03.166.
Cendoya, A., Ransy, F., Lemort, V., Hernandez, A., Gresse, P.-H., Windeshausen, J., Modelling and Simulation of a Carnot Battery Coupled to Seasonal Underground Stratified Thermal Energy Storage for Heating, Cooling and Electricity Generation. International High Performance Buildings Conference, West-Lafayette, 2024, University of Purdue, United States - Indiana, 10 [Online]. Available: https://docs.lib.purdue.edu/ihpbc/472/.
Poletto, C., Dumont, O., De Pascale, A., Lemort, V., Ottaviano, S., Thomé, O., Control strategy and performance of a small-size thermally integrated Carnot battery based on a Rankine cycle and combined with district heating. Energy Convers Manag, 302, 2024, 118111, 10.1016/j.enconman.2024.118111.
Kaufmann, F., Von Zabienski, J., Von Ribbeck, L., Ehmann, M., Spliethoff, H., Schifflechner, C., Experimental analysis of a reversible high-temperature heat pump/orc test rig for geothermal Chp applications. 2024, SSRN, 10.2139/ssrn.5013851.
Kaufmann, F., Schifflechner, C., Wieland, C., Spliethoff, H., Design and Construction of a Reversible ORC Test Rig for Geothermal CHP Applications. Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 2024th ed., 2024, Editorial Universidad de Sevilla, 81–90, 10.12795/9788447227457_14.
Vecchi, A., et al. Carnot battery development: a review on system performance, applications and commercial state-of-the-art. J Energy Storage, 55, 2022, 105782, 10.1016/j.est.2022.105782.
Dumont, O., Investigation of a heat pump reversible in an organic Rankine cycle and its application in the building sector. 2017, ULiège - Université de Liège, Liège [Online]. Available: https://orbi.uliege.be/handle/2268/218181.
Kaufmann, F., Spliethoff, H., Schifflechner, C., Reversible high-temperature heat pumps for peak load coverage in geothermal heating plants: a techno-economic analysis. Energy Convers Manag, 347, 2026, 120484, 10.1016/j.enconman.2025.120484.
Yu, X., Qiao, H., Yang, B., Zhang, H., Thermal-economic and sensitivity analysis of different Rankine-based Carnot battery configurations for energy storage. Energy Convers Manag, 283, 2023, 116959, 10.1016/j.enconman.2023.116959.
Daniarta, S., Kolasiński, P., Imre, A.R., Performance map and theoretical analysis of Carnot battery technology via novel reversible Rankine-based cycle. Energy Rep 11 (2024), 4500–4514, 10.1016/j.egyr.2024.04.024.
Kosmadakis, G., Neofytou, P., Reversible high-temperature heat pump/ORC for waste heat recovery in various ships: a techno-economic assessment. Energy, 256, 2022, 124634, 10.1016/j.energy.2022.124634.
Guo, B., Lemort, V., Cendoya, A., Control strategy and techno-economic optimization of a small-scale hybrid energy storage system: reversible HP/ORC-based Carnot battery and electrical battery. Energy, 2025, 136508, 10.1016/j.energy.2025.136508.
Dumont, O., Quoilin, S., Lemort, V., Design, modeling and experimentation of a reversible HP-ORC prototype. Volume 3B: Oil and gas applications; organic Rankine cycle power systems; supercritical CO2 power cycles; wind energy, Jun. 2014, American Society of Mechanical Engineers, Düsseldorf, Germany, 10.1115/GT2014-26854 s.
Pezo, M., Cuevas, C., Wagemann, E., Cendoya, A., Net zero energy building technologies – reversible heat pump/organic Rankine cycle coupled with solar collectors and combined heat pump/photovoltaics – case study of a Chilean mid-rise residential building. Appl Therm Eng, 252, 2024, 123683, 10.1016/j.applthermaleng.2024.123683.
Miao, Z., Zhang, M., Yan, P., Xiao, M., Xu, J., Thermodynamic analysis of a low-temperature Carnot battery promoted by the LNG cold energy. J Energy Storage, 88, 2024, 111619, 10.1016/j.est.2024.111619.
Weitzer, M., Müller, D., Steger, D., Charalampidis, A., Karellas, S., Karl, J., Organic flash cycles in Rankine-based Carnot batteries with large storage temperature spreads. Energy Convers Manag, 255, 2022, 115323, 10.1016/j.enconman.2022.115323.
Jockenhöfer, H., Steinmann, W.-D., Bauer, D., Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy 145 (2018), 665–676, 10.1016/j.energy.2017.12.087.
Dumont, O., Reyes, Andres, Lemort, V., Modelling of a thermally integrated Carnot battery using a reversible heat pump/organic Rankine cycle. Presented at the ECOS, 2020, ECOS, Osaka, Japon.
Dumont, O., Charalampidis, A., Lemort, V., Experimental Investigation Of A Thermally Integrated Carnot Battery Using A Reversible Heat Pump/Organic Rankine Cycle. International Refrigeration and Air Conditioning Conference, West-Lafayette, 2021, University of Purdue, United States - Indiana, 14 [Online]. Available: https://docs.lib.purdue.edu/iracc/2085.
Steger, D., Regensburger, C., Eppinger, B., Will, S., Karl, J., Schlücker, E., Design aspects of a reversible heat pump - organic rankine cycle pilot plant for energy storage. Energy, 208, 2020, 118216, 10.1016/j.energy.2020.118216.
Weitzer, M., Müller, D., Karl, J., Reversible Heat Pump-ORC Pilot Plant – Experimental Results and Fluid Charge Optimization. Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 2024th ed., 2023, Editorial Universidad de Sevilla, 430–438, 10.12795/9788447227457_72.
Eppinger, B., Steger, D., Regensburger, C., Karl, J., Schlücker, E., Will, S., Carnot battery: simulation and design of a reversible heat pump-organic Rankine cycle pilot plant. Appl Energy, 288, 2021, 116650, 10.1016/j.apenergy.2021.116650.
Weitzer, M., Moderegger, M., Metzner, L., Kolb, S., Karl, J., Reversible heat pump - Organic Rankine Cycle systems with zeotropic fluid mixtures for enhanced performance – Experimental and simulative results from a pilot plant. International Refrigeration and Air Conditioning Conference, West-Lafayette, 2024, University of Purdue, United States - Indiana [Online]. Available: https://docs.lib.purdue.edu/iracc/2614/.
Weitzer, M., Reiß, S., Steger, D., Kolb, S., Karl, J., Experimental characterization of a reversible heat pump – organic Rankine cycle pilot plant as a thermally integrated Carnot battery. Appl Therm Eng, 260, 2025, 124872, 10.1016/j.applthermaleng.2024.124872.
Hassan, A.H., Corberán, J.M., Ramirez, M., Trebilcock-Kelly, F., Payá, J., A high-temperature heat pump for compressed heat energy storage applications: design, modeling, and performance. Energy Rep 8 (2022), 10833–10848, 10.1016/j.egyr.2022.08.201.
Hassan, A.H., O'Donoghue, L., Sánchez-Canales, V., Corberán, J.M., Payá, J., Jockenhöfer, H., Thermodynamic analysis of high-temperature pumped thermal energy storage systems: refrigerant selection, performance and limitations. Energy Rep 6 (2020), 147–159, 10.1016/j.egyr.2020.05.010.
Couvreur, K., Tassenoy, R., Van Heule, X., De Paepe, M., Lecompte, S., Experimental and numerical analysis of variable volume ratio as additional optimization parameter in organic Rankine cycle expanders. Appl Therm Eng, 216, 2022, 119007, 10.1016/j.applthermaleng.2022.119007.
Theologou, K., et al. CHESTER: experimental prototype of a compressed heat energy storage and management system for energy from renewable sources. Energy Convers Manag, 311, 2024, 118519, 10.1016/j.enconman.2024.118519.
Velanparambil Ravindran, R., Huang, M.J., Hewitt, N., Design and modelling of a small-scale reversible high-temperature heat pump—organic Rankine cycle system for industrial waste heat recovery. Int J Low-Carbon Technol 18 (2023), 482–493, 10.1093/ijlct/ctad038.
Ravindran, R.V., Cotter, D., Wilson, C., Jun Huang, M., Hewitt, N.J., Experimental investigation of a small-scale reversible high-temperature heat pump − organic Rankine cycle system for industrial waste heat recovery. Appl Therm Eng, 257, 2024, 124237, 10.1016/j.applthermaleng.2024.124237.
Charalampidis, A., Sarantopoulos, N., Leontaritis, A., Roumpedakis, T., Karellas, S., Experimental Investigation of a Reversible Heat Pump/ORC for Combined Heating, Cooling, and Electricity Production. Turunen-Saaresti, T., Crespi, F., Spinelli, A., Uusitalo, A., White, M.T., (eds.) Proceedings of the 8th International Seminar on ORC Power Systems (ORC 2025), 2025, LUT Scientific and Expertise Publications, Lappeenranta, Finland, 1–9 [Online]. Available: https://lutpub.lut.fi/handle/10024/170511.
Staub, S., et al. Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity. Energies, 11(6), 2018, 1352, 10.3390/en11061352.
Dumont, O., Lemort, V., Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery. Energy, 211, 2020, 118963, 10.1016/j.energy.2020.118963.
Dumont, O., Poletto, C., Thomé, O., Lemort, V., Methodology for the sizing of a Carnot battery based on a Rankine cycle and application to a 10 kWe system for district heating application. In 36th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems (ECOS 2023), Las Palmas De Gran Canaria, 2023, ECOS, Spain, 2300–2308, 10.52202/069564-0207.
Mateu-Royo, C., Mota-Babiloni, A., Navarro-Esbrí, J., Peris, B., Molés, F., Amat-Albuixech, M., Multi-objective optimization of a novel reversible high-temperature heat pump-organic Rankine cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Convers Manag, 197, 2019, 111908, 10.1016/j.enconman.2019.111908.
Fan, R., Xi, H., Exergoeconomic optimization and working fluid comparison of low-temperature Carnot battery systems for energy storage. J Energy Storage, 51, 2022, 104453, 10.1016/j.est.2022.104453.
Tian, W., Xi, H., Comparative analysis and optimization of pumped thermal energy storage systems based on different power cycles. Energy Convers Manag, 259, 2022, 115581, 10.1016/j.enconman.2022.115581.
Dickes, R., Dumont, O., Lemort, V., Experimental assessment of the fluid charge distribution in an organic Rankine cycle (ORC) power system. Appl Therm Eng, 179, 2020, 115689, 10.1016/j.applthermaleng.2020.115689.
Tassenoy, R., Dumont, O., Lemort, V., Paepe, M.D., Lecompte, S., Experimental Investigation Of A Thermally Integrated Carnot Battery Using A Reversible Heat Pump/Organic Rankine Cycle: Influence Of System Charge On Performance Of The Reversible Scroll Compressor/Expander And Global Performance. International Refrigeration and Air Conditioning Conference., West-Lafayette, United States - Indiana: University of Purdue, 2022 [Online]. Available: https://docs.lib.purdue.edu/iracc/2315/.
Steger, D., Karl, J., Schlücker, E., Launch and First Experimental Results of a Reversible Heat Pump-ORC Pilot Plant as Carnot Battery. 6 th International Seminar on ORC Power Systems, Munich, Germany, 2021, 10.12795/9788447227457.
Wu, X., Xing, Z., He, Z., Wang, X., Chen, W., Effects of lubricating oil on the performance of a semi-hermetic twin screw refrigeration compressor. Appl Therm Eng 112 (2017), 340–351, 10.1016/j.applthermaleng.2016.10.038.
Schuster, A., Sichert, A., Aumann, R., Thermodynamic machine and method for the operation thereof. [Online]. Available: https://patents.google.com/patent/US8646273B2/en, 2014.
Cendoya, A., Ransy, F., Dumont, O., Guo, B., Lemort, V., Design, Component Selection and Critical Considerations for the Development of a 50 kWe Carnot Battery Coupled to Waste Heat. Turunen-Saaresti, T., Crespi, F., Spinelli, A., Uusitalo, A., White, M.T., (eds.) Proceedings of the 8th International Seminar on ORC Power Systems (ORC 2025), 2025, LUT Scientific and Expertise Publications, Lappeenranta, Finland, 1–10 [Online]. Available: https://lutpub.lut.fi/handle/10024/170511.
Cioncolini, A., Thome, J.R., Void fraction prediction in annular two-phase flow. Int J Multiphase Flow 43 (2012), 72–84, 10.1016/j.ijmultiphaseflow.2012.03.003.
Martin, Holger, Ed., ‘N6: Pressure drop and heat transfer in plate heat exchangers’, in VDI HeatAtlas: Chapter. 2010, Springer Berlin Heidelberg, Berlin, Heidelberg, 10.1007/978-3-540-77877-6.
Shah, M.M., Heat transfer during condensation in corrugated plate heat exchangers. Int J Refrig 127 (2021), 180–193, 10.1016/j.ijrefrig.2021.02.011.
Longo, G.A., Heat transfer and pressure drop during HFC refrigerant saturated vapour condensation inside a brazed plate heat exchanger. Int J Heat Mass Transf 53:5–6 (2010), 1079–1087, 10.1016/j.ijheatmasstransfer.2009.11.003.
Amalfi, R.L., Vakili-Farahani, F., Thome, J.R., Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: review and experimental database. Int J Refrig 61 (2016), 166–184, 10.1016/j.ijrefrig.2015.07.010.
Amalfi, R.L., Vakili-Farahani, F., Thome, J.R., Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: comparison of literature methods to database and new prediction methods. Int J Refrig 61 (2016), 185–203, 10.1016/j.ijrefrig.2015.07.009.
Cuevas, C., Lebrun, J., Lemort, V., Ngendakumana, P., Development and validation of a condenser three zones model. Appl Therm Eng 29:17–18 (2009), 3542–3551, 10.1016/j.applthermaleng.2009.06.007.
Stosic, N., Smith, I., Kovačević, A., Screw compressors: Mathematical modelling and performance calculation. 2005, Springer, Berlin: New York.
Fleming, J.S., Tang, Y., Cook, G., The twin helical screw compressor part 1: development, applications and competitive position. Proc Inst Mech Eng C J Mech Eng Sci 212:5 (1998), 355–367, 10.1243/0954406981521286.
Lemort, V., Declaye, S., Quoilin, S., Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle. Proc Instit Mech Eng, Part A: J Power Energy 226:1 (2012), 126–136, 10.1177/0957650911413840.
Lemort, V., Quoilin, S., Cuevas, C., Lebrun, J., Testing and modeling a scroll expander integrated into an organic Rankine cycle. Appl Therm Eng 29:14–15 (2009), 3094–3102, 10.1016/j.applthermaleng.2009.04.013.
Winandy, E., O, C.S., Lebrun, J., Experimental analysis and simplified modelling of a hermetic scroll refrigeration compressor. Appl Therm Eng 22:2 (2002), 107–120, 10.1016/S1359-4311(01)00083-7.
Cuevas, C., Lebrun, J., Lemort, V., Winandy, E., Characterization of a scroll compressor under extended operating conditions. Appl Therm Eng 30:6–7 (2010), 605–615, 10.1016/j.applthermaleng.2009.11.005.
Eck, B., Fans: Design and operation of centrifugal, axial-flow and cross-flow fans, 1. engl. ed., 1973, Pergamon Pr, Oxford.
Kast, W., Nirschl, H., Gaddis, E., L1 pressure drop in single phase flow. VDI HeatAtlas: Chapter, 2nd Ed., Berlin, Heidelberg, 2010, 1053–1116 [Online]. Available: https://doi.org/10.1007/978-3-540-77877-6_70.
Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and Pseudo-pure fluid Thermophysical property evaluation and the open-source Thermophysical property library CoolProp. Ind Eng Chem Res 53:6 (2014), 2498–2508, 10.1021/ie4033999.
Virtanen, P., et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:3 (2020), 261–272, 10.1038/s41592-019-0686-2.
Laterre, A., Dumont, O., Lemort, V., Contino, F., Extended mapping and systematic optimisation of the Carnot battery trilemma for sub-critical cycles with thermal integration. Energy, 304, 2024, 132006, 10.1016/j.energy.2024.132006.
Poletto, C., Pascale, A.D., Ottaviano, S., Dumont, O., Branchini, L., Techno-economic assessment of a Carnot battery thermally integrated with a data center. Appl Therm Eng, 260, 2025, 124952, 10.1016/j.applthermaleng.2024.124952.
Chen, L.X., Hu, P., Zhao, P.P., Xie, M.N., Wang, F.X., Thermodynamic analysis of a high temperature pumped thermal electricity storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC). Energy Convers Manag 177 (2018), 150–160, 10.1016/j.enconman.2018.09.049.
Ghilardi, A., Frate, G.F., Kyprianidis, K., Tucci, M., Ferrari, L., Brayton pumped thermal energy storage: optimal dispatchment in multi-energy districts. Energy Convers Manag, 314, 2024, 118650, 10.1016/j.enconman.2024.118650.
Dardenne, L., Fraccari, E., Maggioni, A., Molinaroli, L., Proserpio, L., Winandy, E., Semi-empirical modelling of a variable speed scroll compressor with vapour injection. Int J Refrig 54 (Jun. 2015), 76–87, 10.1016/j.ijrefrig.2015.03.004.