Article (Scientific journals)
Personalized prediction of SARS-CoV-2 vaccine-induced immunity after boost: a longitudinal analysis using joint modeling.
Papadopoulos, Iraklis; Diep, Anh Nguyet; Schyns, Joey et al.
2025In Frontiers in Immunology, 16, p. 1619631
Peer Reviewed verified by ORBi
 

Files


Full Text
fimmu-16-1619631 (1) (1).pdf
Publisher postprint (13.9 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
SARS-CoV-2; breakthrough infection; immune response; joint modelling; prediction; COVID-19 Vaccines; Antibodies, Viral; Antibodies, Neutralizing; Immunoglobulin G; Spike Glycoprotein, Coronavirus; Humans; Longitudinal Studies; Antibodies, Viral/blood; Antibodies, Viral/immunology; Antibodies, Neutralizing/blood; Antibodies, Neutralizing/immunology; Female; Male; Middle Aged; Adult; Immunoglobulin G/blood; Immunoglobulin G/immunology; Models, Statistical; Precision Medicine; Aged; Spike Glycoprotein, Coronavirus/immunology; SARS-CoV-2/immunology; COVID-19/immunology; COVID-19/prevention & control; COVID-19 Vaccines/immunology; COVID-19 Vaccines/administration & dosage; Immunization, Secondary
Abstract :
[en] INTRODUCTION: The SARS-CoV-2 pandemic has revealed substantial inter-individual variability in immune responses, particularly following widespread primary vaccination and booster campaigns. These differences affect the durability of protective immunity and the need for additional booster doses. To optimize the management of current and future epidemics, there is a critical need for predictive tools that personalize immune monitoring and guide targeted booster strategies for vulnerable populations. METHODS: In this study, we conducted a 15-month longitudinal analysis of a cohort of 1,000 individuals to identify key determinants of serological response following the first SARS-CoV-2 vaccine booster. We investigated how these factors influenced the risk of subsequent infection, and we developed statistical models to predict individual trajectories of anti-spike (S) IgG and neutralizing antibody (NAb) levels. RESULTS-DISCUSSION: Our findings show that joint models (JMs), which integrate longitudinal antibody measurements with infection outcomes, significantly outperform traditional modeling approaches in predicting immune trajectories. This work underscores the potential of joint modeling to enable personalized immune surveillance, supporting strategies to sustain protective immunity in high-risk populations. In the future, this approach may be adapted for monitoring long-term immunity against other infectious diseases.
Disciplines :
Immunology & infectious disease
Author, co-author :
Papadopoulos, Iraklis  ;  Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Diep, Anh Nguyet  ;  Université de Liège - ULiège > Santé publique : de la Biostatistique à la Promotion de la Santé
Schyns, Joey  ;  Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Gourzonès, Claire ;  Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Minner, Frédéric ;  Université de Liège - ULiège > GIGA > GIGA Immunobiology - Cellular and Molecular Immunology
Bonhomme, Germain ;  Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Paridans, Marine  ;  Université de Liège - ULiège > Département des sciences de la santé publique > Education thérapeutique du patient au service des soins intégrés
Gillain, Nicolas  ;  Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique : aspects spécifiques
Husson, Eddy ;  Université de Liège - ULiège > Département des sciences de la santé publique
Garigliany, Mutien-Marie  ;  Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie générale et autopsies
Darcis, Gilles  ;  Université de Liège - ULiège > Département des sciences cliniques > Immunopathologie - Maladies infectieuses et médecine interne générale
Desmecht, Daniel ;  Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Guillaume, Michèle ;  Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique : aspects spécifiques
Bureau, Fabrice  ;  Université de Liège - ULiège > GIGA > GIGA Immunobiology - Cellular and Molecular Immunology
Donneau, Anne-Françoise   ;  Université de Liège - ULiège > Département des sciences de la santé publique
Gillet, Laurent   ;  Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Vaccinologie vétérinaire
More authors (6 more) Less
 These authors have contributed equally to this work.
Language :
English
Title :
Personalized prediction of SARS-CoV-2 vaccine-induced immunity after boost: a longitudinal analysis using joint modeling.
Publication date :
2025
Journal title :
Frontiers in Immunology
eISSN :
1664-3224
Publisher :
Frontiers, Switzerland
Volume :
16
Pages :
1619631
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 24 October 2025

Statistics


Number of views
20 (0 by ULiège)
Number of downloads
10 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi