[en] Background/Objectives: The laser beam absorption and thermal relaxation time (TRT) in oral tissues are key to optimizing treatment parameters. The aim of this study is to (1) evaluate, in an ex vivo study, the percentage of attenuation and transmittance of each wavelength as a function of tissue thickness; (2) determine the global absorption coefficient, α, of pig gingival tissue for the most commonly used wavelengths in dentistry; (3) calculate the thermal relaxation time (TRT) of oral tissue for these wavelengths; and (4) determine their corresponding penetration depths. Methods: We measured the transmission of different laser wavelengths through pig oral gingival tissues (Mandibular labial gingiva). We placed each tissue sample between two glass slides with minimal light attenuation. The input and output powers were measured after irradiating the tissue at different specific wavelengths: 450 nm, 480 nm, 532 nm, 632 nm, 810 nm, 940 and 980 nm, 1064 nm, 1341, 2780 nm and 2940 nm. After calculating the transmittance values, we plotted transmittance curves for each wavelength. Using the Beer-Lambert law, we then calculated the absorption coefficient (α) of each wavelength in the oral gingival tissue. Absorption coefficients were then used to calculate the TRT and penetration depth for each wavelength. Results: Among the tested wavelengths, 810 nm exhibited the lowest absorption in ex vivo porcine gingival tissue (α = 9.60 cm-1). The 450 nm blue laser showed moderate absorption (α = 26.8 cm-1), while the Er:YAG laser at 2940 nm demonstrated the highest absorption (α = 144.8 cm-1). We ranked the wavelengths from most absorbed to least absorbed by porcine oral gingival mucosa as follows: 2940 nm > 2780 nm > 450 nm > 480 nm > 532 nm > 1341 nm > 632 nm > 940 nm > 980 nm > 1064 nm > 810 nm. Conclusions: Absorption and the TRT vary significantly across wavelengths. Erbium lasers are characterized by the highest absorption and minimal light penetration. Infrared diodes, particularly the 810 nm wavelength, showed the lowest absorption and deepest tissue penetration and exhibited the highest thermal relaxation time. The 480 nm laser demonstrated greater absorption by porcine gingival tissue compared to the 532 nm laser. These findings provide evidence-based guidance for wavelength selection in dental treatments and photobiomodulation, enabling improved precision, safety, and therapeutic efficacy in clinical practice.
Disciplines :
Dentistry & oral medicine
Author, co-author :
Ismail, Mayssaa; Department of Dental Science, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
Michel, Thibault; Department of Dental Science, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
Heysselaer, Daniel; Department of Dental Science, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
Houeis, Saad; Department of Dental Science, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
Peremans, Andre; Department of Physics and Photonics, Laserspec Inc., 5020 Namur, Belgium
Vanheusden, Alain ; Université de Liège - ULiège > Département des sciences dentaires > Prothèse dentaire fixe - Anatomie bucco-dentaire
Namour, Samir ; Université de Liège - ULiège > Département des sciences dentaires
Language :
English
Title :
Absorption, Thermal Relaxation Time, and Beam Penetration Depth of Laser Wavelengths in Ex Vivo Porcine Gingival Tissues.
Hudson D.E. Hudson D.O. Wininger J.M. Richardson B.D. Penetration of laser light at 808 and 980 nm in bovine tissue samples Photomed. Laser Surg. 2013 31 163 168 10.1089/pho.2012.3284
Souza-Barros L. Dhaidan G. Maunula M. Solomon V. Gabison S. Lilge L. Nussbaum E.L. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics Lasers Surg. Med. 2018 50 291 301 10.1002/lsm.22760 29178437
Herd R. Dover J. Arndt K. Basic laser principles Dermatol. Clin. 1997 15 355 371 10.1016/S0733-8635(05)70446-0 9189674
Niemz M.H. Light and matter Laser-Tissue Interactions: Fundamentals and Applications 2nd ed. Springer New York, NY, USA 2003 9 43
Kolarova H. Ditrichova D. Wagner J. Penetration of the laser light into the skin in vitro Lasers Surg. Med. 1999 24 231 235 10.1002/(SICI)1096-9101(1999)24:3<231::AID-LSM8>3.0.CO;2-#
Bahrami R. Pourhajibagher M. Gharibpour F. Hosseini S. Bahador A. The impact of low-level laser therapy (photobiomodulation) on the complications associated with conventional dental treatments and oral disorders: A literature review J. Dent. Sci. 2025 20 901 910 10.1016/j.jds.2024.08.023
Barbosa R.I. Guirro E.C.O. Bachmann L. Brandino H.E. Guirro R.R.J. Analysis of low-level laser transmission at wavelengths 660, 830 and 904 nm in biological tissue samples J. Photochem. Photobiol. B 2020 209 111914 10.1016/j.jphotobiol.2020.111914
Bertie J.E. Lan Z. Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm−1 Appl. Spectrosc. 1996 50 1047 1057 10.1366/0003702963905385
Eid M. El-Bahy G. Shabaka A. Spectroscopic study of the effect of alpha tocopherol on erythrocytes irradiated with neutrons Rom. J. Biophys. 2011 21 303 316
Wakjira M.A. Hunde G.G. Balcha M.A. Balasubramanian N. Optimization of collagen extraction from sheep raw trimming wastes using acid hydrolysis J. Energy Environ. Chem. Eng. 2022 7 9 18 10.11648/j.jeece.20220701.12
Stefanescu R. Brebu S. Matei M. Riscab I.M. Surleva A. Drochioiu G. Contribution to casein determination by UV-Vis spectrophotometry Acta Chem. Iasi 2017 25 112 126 10.1515/achi-2017-0011
Mirza Z. Azhdari M. Kolomenskiy D. Rezazadeh G. Ricken T. Pathak R. Tautenhahn H.-M. Tautenhahn F. Seyedpour S.M. Enhancing laser therapy procedure through surface temperature control in multi-layered skin tissue J. Therm. Biol. 2025 129 104106 10.1016/j.jtherbio.2025.104106 40273630
Takeda G. Shimojo Y. Ozawa T. Nishimura T. Spatial distribution of light–melanosome interaction dependent on irradiation fluence and spot size for short-pulsed laser skin treatment: A phantom study Lasers Med. Sci. 2025 40 251 10.1007/s10103-025-04430-x 40445442
Hunt T.K. Aslam R.S. Laser-tissue interactions: Basic principles and clinical applications J. Clin. Laser Med. Surg. 2009 27 169 176
Cilesiz I.F. Welch A.J. Light dosimetry: Effects of dehydration and thermal damage on the optical properties of the human aorta Appl. Opt. 1993 32 477 487 10.1364/AO.32.000477
Perez E.F. Moille G. Lu X. Stone J. Zhou F. Srinivasan K. High-performance Kerr microresonator optical parametric oscillator on a silicon chip Nat. Commun. 2023 14 242 10.1038/s41467-022-35746-9
Gutiérrez-Corrales A. Reilly D. Bajpai S. Whelan H.T. Bourouni M. McHale P. Johnson R. Smith J. Thompson L. Davis K. Porcine and human oral mucosa: A comparative study of histological features and laser-tissue interactions J. Oral. Laser Ther. 2020 12 140 150
Debta F.M. A Compendium of Principles and Practice of Laser Biophotonics in Oral Medicine Nova Science Publishers New York, NY, USA 2022
Camargo C.P. Forner-Cordero A. Silva B.M. de Souza V.M. Cunha H.S. de Oliveira Feitosa Y. Campello G.A. dos Santos P.H.G. Rego C.L. Carvalho H. et al. Effect of photobiomodulation with different wavelengths on radiodermatitis treatment Plast. Reconstr. Surg. Glob. Open 2023 11 e4809 10.1097/GOX.0000000000004809
Reilly D. Photobiomodulation therapy: An overview and application in wound healing and pain management J. Laser Ther. 2022 15 122 130
Bajpai S. Choi J. Effect of red and infrared laser irradiation on soft tissue and bone photobiomodulation therapy J. Photobiol. Photomed. 2023 50 45 52
Whelan H.T. Smits R.L. Jr. Buchman G.T. Whelan N.T. Turner T. Margolis D.A. Buchmann V. Walsh M. Larionova Y. Stinson R. The effect of low-power laser therapy on wound healing: A systematic review Photomed. Laser Surg. 2001 19 17 21
Bourouni M.C. Kyriakidou K. Fourmousis I. Vrotsos I.A. Karoussis I.K. Effects of 810 nm diode laser on osteoblasts and gingival fibroblasts in vitro J. Photochem. Photobiol. B 2021 215 112118
Alfarafisa N.M. Chou Y. Santika R. Riestiano B.E. Soedjana H. Syamsunarno M.R.A.A. Adipose-derived stem cell products and combination therapies for the treatment of pathological scars: A review of current preclinical and clinical studies Clin. Cosmet. Investig. Dermatol. 2025 18 1309 1337 10.2147/CCID.S511067
Hanke A. Fimmers R. Frentzen M. Meister J. Quantitative determination of cut efficiency during soft tissue surgery using diode lasers in the wavelength range between 400 and 1500 nm Lasers Med. Sci. 2021 36 1633 1647 10.1007/s10103-020-03243-4
Welch A.J. van Gemert M.J.C. Optical-Thermal Response of Laser-Irradiated Tissue 2nd ed. Springer Dordrecht, The Netherlands 2011
Lee S.Y. Kim J.H. Park J.J. Choi S.H. Optical absorption characteristics of protein-rich oral tissues in response to visible laser wavelengths Lasers Med. Sci. 2019 34 1201 1208
Kawamura R. Mizutani K. Lin T. Kakizaki S. Mimata A. Watanabe K. Saito N. Meinzer W. Iwata T. Izumi Y. et al. Ex vivo evaluation of gingival ablation with various laser systems and electroscalpel Photobiomodul. Photomed. Laser Surg. 2020 38 364 373 10.1089/photob.2019.4713 32175812
Parker S. Cronshaw M. Anagnostaki E. Mylona V. Lynch E. Grootveld M. Current concepts of laser–oral tissue interaction Dent. J. 2020 8 61 10.3390/dj8030061 32605215
Štembírek J. Kyllar M. Putnová I. Stehlík L. Buchtová M. The pig as an experimental model for clinical craniofacial research Lab. Anim. 2012 46 269 279 10.1258/la.2012.012062