Poster (Scientific congresses and symposiums)
Context-Dependent Manifold Learning in Dynamical Systems: A Neuromodulated Constrained Autoencoder Approach
Adriaens, Jérôme; Drion, Guillaume; Sacré, Pierre
2025Symmetry and Geometry in Neural Representations workshop, NeurIPS 2025
Peer reviewed
 

Files


Full Text
Extended_Abstract.pdf
Author preprint (316.62 kB)
An extended abstract of our work has been accepted for poster presentation at the NeurReps 2025 workshop.
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Nonlinear dimensionality reduction; Neuromodulation; Context-dependent learning; Constrained autoencoder
Abstract :
[en] This work introduces a novel approach to context-dependent manifold learning in dynamical systems using a modulated constrained autoencoder (cAE). Classic dimensionality reduction methods often fail to account for context-dependent relationships in data without explicitly reducing the context combined with the original input. However, these relationships are critical when physical parameters or environmental conditions vary. Building on the constrained autoencoder framework, which imposes geometric constraints to ensure smooth manifold representations and proper projections, we incorporate neuromodulation to enable context-dependent learning. Neuromodulation is a fundamental mechanism that uses neuromodulators to tune neuronal properties and circuit function dynamically. It is essential for generating flexible brain states and complex behaviors. Our method effectively integrates contextual information into the constrained autoencoder framework, allowing for context-dependent dimensionality reduction. This advancement has significant implications for learning smooth, context-aware manifolds in dynamical systems.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Adriaens, Jérôme ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Robotique intelligente
Drion, Guillaume ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes et modélisation
Sacré, Pierre  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Robotique intelligente
Language :
English
Title :
Context-Dependent Manifold Learning in Dynamical Systems: A Neuromodulated Constrained Autoencoder Approach
Publication date :
23 September 2025
Event name :
Symmetry and Geometry in Neural Representations workshop, NeurIPS 2025
Event place :
San Diego, United States - California
Event date :
Tuesday Dec 2nd through Sunday Dec 7th
Audience :
International
Peer review/Selection committee :
Peer reviewed
Funders :
FPS BOSA - Federal Public Service Policy and Support
Funding text :
This work was supported by the Belgian Government through the FPS Policy and Support (BOSA) grant NEMODEI.
Available on ORBi :
since 02 October 2025

Statistics


Number of views
67 (32 by ULiège)
Number of downloads
29 (4 by ULiège)

Bibliography


Similar publications



Contact ORBi