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Abstract

This work introduces a novel approach to context-dependent manifold learning in dy-
namical systems using a modulated constrained autoencoder (cAE). Classic dimensionality
reduction methods often fail to account for context-dependent relationships in data without
explicitly reducing the context combined with the original input. However, these relation-
ships are critical when physical parameters or environmental conditions vary. Building
on the constrained autoencoder framework, which imposes geometric constraints to ensure
smooth manifold representations and proper projections, we incorporate neuromodulation
to enable context-dependent learning. Neuromodulation is a fundamental mechanism that
uses neuromodulators to tune neuronal properties and circuit function dynamically. It is
essential for generating flexible brain states and complex behaviors. Our method effectively
integrates contextual information into the constrained autoencoder framework, allowing for
context-dependent dimensionality reduction. This advancement has significant implications
for learning smooth, context-aware manifolds in dynamical systems.

Keywords: Nonlinear dimensionality reduction, Neuromodulation, Context-dependent
learning, Constrained autoencoder

1. Introduction & related work

Dimensionality reduction is fundamental for analyzing high-dimensional data. While linear
methods like PCA are widely used, they often fail to capture complex nonlinear relation-
ships. This limitation led to the development of nonlinear approaches such as autoen-
coders (Wang et al., 2016) and kernel PCA (Schölkopf et al., 1997). However, traditional
linear and nonlinear dimensionality reduction methods commonly overlook context, which
critically influences data relationships, especially in dynamical systems with varying phys-
ical parameters or environmental conditions. To address this without augmenting input
dimensions, we seek a mechanism that subtly adapts the projection itself.

To bridge this gap, we propose a novel approach to context-dependent dimensionality re-
duction, leveraging the cAE framework (Otto et al., 2023). This framework, which utilizes
Riemannian optimization on the biorthogonal manifold, ensures smooth, data-respecting
manifold representations—a key advantage over unstructured linear or nonlinear methods.
To enable adaptive learning, we integrate neuromodulation that dynamically tunes the
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cAE activation functions with a context vector, inspired by biological mechanisms (Ve-
coven et al., 2020). Our network adapts its dimensionality reduction to external signals
or changing physical parameters. This integration is further enhanced by leveraging geo-
metric optimization for manifold learning (Friedl et al., 2025), aligning well with the cAE
geometrically constrained output.

This work initially explores neuromodulation integration within the cAE framework.
We demonstrate its effectiveness for context-dependent dimensionality reduction on a 16-
degree-of-freedom (DoF) pendulum dynamical system with varying context parameters.

2. Neuromodulated Constrained Autoencoder

This section details our neuromodulated cAE, first introducing its framework for well-
structured manifold learning, then explaining neuromodulation role in context-dependent
adaptation. See Figure 1 for a visual overview.

2.1. Constrained Autoencoders

The cAE, as introduced by (Otto et al., 2023), is designed to learn smooth, embedded
submanifolds of the data space. It achieves this by enforcing a critical geometric property:
the composition of its encoder and decoder functions forms an idempotent projection op-
erator. Mathematically, this means the cAE encoder ρ and decoder φ satisfy ρ ◦ φ = Id,
making P = φ ◦ ρ a smooth, idempotent mapping. This ensures the learned manifold
M̂ = Range(P ) is indeed a smooth embedded submanifold of the data space (Michor,
2008). To enforce this property in a neural network, the encoder ρ = ρ(1) ◦ · · · ◦ ρ(L) and
the decoder φ = φ(L) ◦ · · · ◦ φ(1) are built pairwise from layer pairs (l). Each layer uses
biorthogonal weight matrices Ψl and Φl, and smooth activation function pairs (σ−, σ+)
which are the inverse of one another:

ρ(l)(x(l)) = σ−

(
ΨT

l (x
(l) − bl)

)
, φ(l)(z(l−1)) = Φlσ+

(
z(l−1)

)
+ bl (1)

This construction inherently includes the constraint ΨT
l Φl = I. The biorthogonality

constraint is enforced during training either by projection methods or, as in Friedl et al.
(2025) and adopted in our work, through Riemannian optimization on the biorthogonal
manifold using the geoopt library. More details about the cAE can be found in Appendix A.

2.2. Neuromodulation

In addition to the geometric constraints imposed by the cAE, we introduce neuromodulation
in the framework to enable context-dependent learning. In biological systems, neuromodula-
tion is a crucial process that grants the nervous system its remarkable flexibility, dynamically
tuning the fundamental properties of neurons and networks(Bargmann and Marder, 2013).
This dynamic regulation is vital for generating flexible brain states and complex behaviors.
From a machine learning perspective, neuromodulation allows a network to flexibly adjust
its internal representations in response to varying environments or tasks (Vecoven et al.,
2020).

In this work, we achieve context-dependent learning by replacing the fixed activation
functions from Section 2.1 with parameterized versions, σ±(·;α(l)). These layer-specific
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parameters, α(l), are generated through a two-step process driven by a context vector c.
Initially, the context vector c is passed through a fully connected layer to produce a global
neuromodulation signal s. Subsequently, for each layer l, this signal s is multiplied by a
layer-pair specific weight matrix, W T

l . This mechanism allows the activation functions to
adjust their nonlinear transformations flexibly in response to the given context. Figure 1
illustrates how the context vector c influences these activation functions. More details can
be found in Appendix B.

Common neuromodulation

Layer specific
neuromodulation

c
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· · ·
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Figure 1: Scheme of the inclusion of neuromodulation in the cAE. The context vector c
generates a neuromodulation signal s. This signal is then multiplied by a layer
pair weight matrix W l to obtain the activation function parameters α(l).

3. Experiments & Results

The experiments consist in two parts, both based on a 16-DoF pendulum. The first, referred
to as the standard pendulum experiment, modifies the setup from Friedl et al. (2025) by
sampling randomly the lengths of the first four links uniformly in the range [0.35, 0.65]m,
while keeping the coupling of the last 12 DoF unchanged. For the second, the context-
dependent pendulum experiment, we adapt the pendulum system to integrate context-
dependent context-dependent coupling, where the coupling function links the lengths of
the four DoF and their joint angles. It is important to note that the second task is signifi-
cantly more complex than the first one. The exact coupling and data generation process are
provided in Appendix C. For both experiments, we compare three architectures to assess
the impact of neuromodulation and contextual information:

1. cAE : A constrained autoencoder without modulation.
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2. IcAE : A modulated constrained autoencoder with an irrelevant context (c = 0),
serving as a control for increased model capacity.

3. McAE : A modulated constrained autoencoder with a relevant context.

This evaluation aims to demonstrate that incorporating relevant contextual information sig-
nificantly improves dimensionality reduction. We report the root mean square error (RMSE)
distributions for position and first-derivative (velocity) reconstruction on an unseen test set
in Figure 2. In the standard pendulum experiment, all three architectures yield comparable
performance, aligning with theoretical expectations given the context-independent coupling.
However, the context-dependent pendulum experiment reveals compelling insights: while
the IcAE and cAE exhibit similar reconstruction errors, the McAE demonstrates signifi-
cantly superior performance, reducing both position and velocity reconstruction errors by a
factor of 2 to 3. This observed difference in performance empirically supports that the McAE
effectively leverages contextual information, validating our neuromodulation approach for
addressing context-dependent learning challenges.
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Figure 2: Distribution of the root mean square error (RMSE) using the test set on the three
architectures. The RMSE is computed on 1 test trajectory of 3001 states with
the same link lengths. Left: RMSE of the reconstruction of the pendulum DoFs.
Right: RMSE of the first-order derivative reconstruction of the pendulum DoFs.

4. Conclusion & Perspectives

This work introduces a novel approach for context-dependent manifold learning using neuro-
modulated cAE. Preliminary results demonstrate the potential of our method, particularly
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in capturing context-dependent relationships in dynamical systems. This work is prelimi-
nary, and future efforts will focus on refining and rigorously validating our approach. This
includes a deeper inspection of the latent space under various context changes, and further
refinements to the neuromodulation mechanism itself. Additionally, we aim to extend its
applicability to higher-dimensional and more dynamical systems, such as the three-state
vortex model from Otto et al. (2023) and the 192 DoF rope simulation described in Friedl
et al. (2025), to fully validate its generalizability. We believe this method has the potential
to significantly advance context-dependent manifold learning and enable new applications
in dynamical systems.
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Appendix A. Constrained autoencoder details

The constrained autoencoder was initially proposed by Otto et al. (2023). They impose that
their autoencoder is a projection to leverage the autoencoder for projection-based reduced
order modeling. The autoencoder is composed of an encoder ρ and a decoder φ such that
the encoder maps the data space X to a latent space Z, and the decoder reconstructs
the data from the latent space. By imposing ρ ◦ φ = IdZ , we ensure that P = φ ◦ ρ is
a projection. In this case, P is smooth and idempotent, so M̂ = Range(P ) is a smooth
embedded submanifold of X (Otto et al., 2023; Michor, 2008). The encoder ρ and decoder φ
are defined as a composition of layers such that ρ = ρ(1) ◦ · · · ◦ ρ(L) and φ = φ(L) ◦ · · · ◦φ(1),
where ρ(l) : Rnl → Rnl−1 and φ(l) : Rnl−1 → Rnl . Denoting d the latent space dimension
and n the input space dimension, d = n0 ≤ · · · ≤ nL = n.

A.1. Biorthogonal layers

To ensure the geometric properties of the cAE, the encoder ρ and decoder φ are constructed
with specific layer structures. Each layer transformation for the encoder and decoder can
be expressed as:

ρ(l)(x(l)) = σ−

(
ΨT

l (x
(l) − bl)

)
and φ(l)(z(l−1)) = Φlσ+

(
z(l−1)

)
+ bl, (2)

where Ψl ∈ Rnl−1×nl and Φl ∈ Rnl×nl−1 are the weight matrices for the encoder and
decoder layers, respectively. The pair (σ−, σ+) consists of smooth activation functions that
are inverses of one another, and bl are the bias vectors.

For each layer to satisfy the idempotent property ρ(l)◦φ(l) = IdRnl−1 , a crucial condition
must be met by the weight matrices:

ΨT
l Φl = IRnl−1 . (3)

This defines Φl and Ψl as biorthogonal matrices (Glashoff and Bronstein, 2016). This con-
dition can be enforced in several ways. The approach from Otto et al. (2023) involves an
overparametrization of weight matrices followed by a projection map onto the biorthogonal
manifold, though this introduces additional loss terms. Building upon this, Friedl et al.
(2025) proposed an alternative: they ensure biorthogonality by using a specific geomet-
ric optimization framework, minimizing their loss function via Riemannian optimization
directly on the biorthogonal manifold. Following their methodology, we adopt this geomet-
ric optimization approach for our training process, implemented using the Python package
geoopt (Kochurov et al., 2020).

A.2. Activation functions

The activation functions used in our cAE are a crucial component, designed to be smooth
and invertible, with the encoder and decoder utilizing inverse pairs (σ−, σ+). These specific
functions were first presented by Otto et al. (2023) as part of the cAE framework. They
are derived from a particular form of hyperbola where the upper and lower branches are
reflections of one another with respect to the axis y = x.

7



Extended Abstract Track
Adriaens Drion Sacré

More formally, the expression for this inverse pair is:

σ±(x) =
bx

a
∓

√
2

a sin(α)
± 1

a

√√√√( 2x

sin(α) cos(α)
∓

√
2

cos(α)

)2

+ 2a,

where

a = csc2(α)− sec2(α), b = csc2(α) + sec2(α), with 0 < α < π/4.

Notably, the parameter α in these equations is the target for our neuromodulation, allowing
the activation functions to adapt based on context (details in Appendix B). A visualization
of these activation functions for different values of α is provided in Figure 3.
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Figure 3: Activation functions σ± for different values of α.

Appendix B. Neuromodulation details

Neuromodulation in biological neural systems refers to the process by which neuromodula-
tors (such as dopamine or serotonin) modulate neuronal activity and synaptic properties,
enabling adaptive responses. Unlike classical neurotransmission, neuromodulation can act
broadly across neural circuits, allowing the same network to produce different outputs de-
pending on the neuromodulatory context (Bargmann and Marder, 2013). In artificial neural
networks, this concept translates into dynamically adjusting network parameters based on
contextual information, allowing the same network architecture to exhibit different behav-
iors depending on the input context. In our neuromodulated constrained autoencoder, we
implement context-dependent activation functions where the activation parameters α(l) for
a pair of layers l are modulated by a context vector c.
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Modulated activation functions The encoder and decoder layers in our method use
context-dependent activation functions:

ρ(l)(x(l)) = σ−

(
ΨT

l (x
(l) − bl);α

(l)
)
, (4)

φ(l)(z(l−1)) = Φlσ+

(
z(l−1);α(l)

)
+ bl, (5)

where the parameter α from Section A.2 becomes variable and is specific to each input
dimension, such that it writes now α(l) ∈ Rnl−1 . In addition, the values α(l) are constrained
to lie within a specific range [10−5, π8 ] which is more restrictive than the initial setting with
the range ]0, π4 [ . The reason behind this can be shown in Figure 4 where we can see that
for α values close to π/4, we have very steep slopes which can cause issues with training.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

x

α = π/4.05

σ+
σ−

y = x

Figure 4: Activation functions σ± for α near π
4 .

The neuromodulation process follows a two-stage mechanism:

Stage 1: Context processing The context vector c ∈ Rdc is first processed through a
fully-connected neural network to generate a neuromodulation signal:

s = fnmd(c;θ), (6)

where fnmd is a multilayer perceptron with parameters θ, and s ∈ Rds is the resulting
neuromodulation signal. We denote ds and dc as the dimensions of the neuromodulation
signal and context vector, respectively.

Stage 2: Layer-specific modulation For each pair of layers l, the neuromodulation
signal is transformed into intermediate layer-pair-specific activation parameters:

ᾱ(l) = W T
l s, (7)

where W l ∈ Rds×nl−1 is a learnable transformation matrix specific to layer pair l. Then, to
ensure that the activation parameters α(l) lie within the desired range, we apply a scaled
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and shifted sigmoid function:

α(l) = (αmax − αmin) · sigmoid
(
ᾱ(l)

)
+ αmin, (8)

sigmoid(x) =
1

1 + exp (−x)
(9)

where αmin and αmax are the minimum and maximum values for the activation parameters,
respectively, and α(l) ∈ Rnl−1 contains the parameters for the activation functions in that
layer pair.

Appendix C. Experimentations Details

The experimental setup consists of two main parts, both centered on a 16-DoF pendulum
system. The first four pendulum links are modeled in MuJoCo (Todorov et al., 2012) as a
capsule with a fixed radius of 0.05m and a mass of 1.0 kg, while the other DoF come from
the coupling with the first 4 joints. The context vector c consists of the four link lengths
(l1 to l4).

C.1. Standard coupling

In the first experiment, the initial 4 DoF (q1 to q4) correspond to the angles of the first
four pendulum links. For each simulation, the lengths of these four links (l1 to l4) are
randomly sampled from a uniform distribution in the range [0.35, 0.65]m. The remaining
12 DoF (q5 to q16) are generated using nonlinear coupling functions that depend only on
the first four angles q1 to q4, as detailed in Table 1(a). This setup allows us to investigate
how the constrained autoencoder captures the underlying manifold structure when the
context (link lengths li) varies but does not directly affect the coupling. In this setup, we
want to ensure that the potential differences in performance are only due to the fact that
the modulated networks have more parameters (since they can learn parameters for the
activation functions), but we expect to have similar results.

C.2. Context-dependent coupling

The second experiment extends the first by introducing context-dependent coupling. Here,
the nonlinear coupling functions for the last 12 DoF are modified to explicitly depend
on both the angles (q1 to q4) and the corresponding link lengths (l1 to l4), as shown in
Table 1(b). This creates a scenario where the context vector (link lengths) directly influ-
ences the relationships between the DoF, making the underlying manifold structure context-
dependent. This experiment aims to show that relevant context information is crucial to
learn the manifold structure effectively and that the modulated constrained autoencoder
can use this information to improve its performance.

C.3. Data collection

This section details the procedure for collecting data for our dataset. We begin by uniformly
sampling the first four link lengths from the range [0.35, 0.65]m. Each such pendulum
configuration is then simulated in MuJoCo for 3s with a timestep of 1ms. For the training
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Table 1: Coupling functions.

(a) Standard Coupling
DoF f(q1, q2, q3, q4)

q5 q3 − cos(q2)
q6 q1 + 0.1 sin(q2)
q7 q4 cos(q2)
q8 q1 + q23
q9 1.5 sin(q2)
q10 −q4q1
q11 sin(q1)
q12 0.4q3q4
q13 −0.9q1 − q2 + q3 − 2q24
q14 −3 sin(q3)
q15 −2q23
q16 −0.9q21

(b) Context-dependent Coupling
DoF f(q1, q2, q3, q4, l1, l2, l3, l4)

q5 q3 − cos(2l2q2)
q6 q1 + 2l10.1 sin(2l2q2)
q7 q4 cos(2l4q2)

q8 q1 + q2·2l33

q9 2l21.5 sin(q2)
q10 −(l4 + l1)q4q1
q11 sin(2l1q1)
q12 2l30.4q3q4
q13 −2l10.9q1 − q2 + q3 − 2q2·2l44

q14 −2l33 sin(q3)

q15 −2q2·2l33

q16 −0.9q2·2l11

dataset, we collect 100 trajectories. For each sampled link length configuration, the initial
configuration of the first four joints is uniformly sampled from [0, 30]◦. For the test dataset,
we sample 256 distinct link length configurations by taking all possibilities from the set
{0.35, 0.45, 0.55, 0.65}4m. For these test configurations, the initial angle for all joints is
consistently set to 15◦. This regular, systematic sampling for the test set is chosen to provide
a comprehensive and unbiased evaluation of our model’s performance across a representative
grid of contextual parameters, ensuring robust assessment of context-dependent behavior.

C.4. Architecture and training details

For the 3 architectures (cAE, IcAE and McAE), we used four biorthogonal layer pairs
within the encoder ρ(l) : Rnl → Rnl−1 and the decoder φ(l) : Rnl−1 → Rnl where the size
nl = [8, 16, 16, 16]. The latent size d = n0 is set to 4 as the first four joints describe the
entire pendulum. For the cAE, the α parameter is set to π

10 . For the IcAE and McAE, the
neuromodulation neural network is composed of 2 fully connected layers of size 4 with a
hyperbolic tangent activation function after the first layer. We use the Riemannian Adam
optimizer from geoopt with a learning rate of 5 · 10−2 and a weight decay of 10−6 for 5000
epochs of training. We also use the ReduceLROnPlateau scheduler from PyTorch python
package with a patience of 100 and a factor of 0.9. Finally, the loss used for optimizing the
parameters of the different autoencoders is as follows

Lae =
1

N

N∑
i=0

(x− P (x))2 + (ẋ−∇xP (x) · ẋ)2

where N is the batch size, and P (x) = φ ◦ ρ (x).
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