This is the author version of the paper in open access. The published pdf (i.e. with the layout of the publisher) is available on the publisher website (see DOI link) or by request via ORBI.
[en] In predators, growth often drives ontogenetic dietary shifts (ODSs), leading to increasing trophic position (TP) with body size as growing individuals gradually incorporate larger prey in their diet. In species exhibiting extreme size variation, particularly those with gigantism, TP may increase markedly with body size, as large individuals might gain access to prey considerably higher in the food chain and inaccessible to smaller conspecifics. This can ultimately lead to apex predator status in the largest individuals. In this study, we investigated for the first time ODSs in one of the world's largest amphibians, the Japanese giant salamander Andrias japonicus. We combined stomach content and stable isotope analysis (δ15N, δ13C) from 160 individuals across a broad size range to quantify dietary patterns and TP changes. We found a non‐linear increase in TP with body size, from approximately 3.0–5.1, with a marked inflection point at a snout–vent length of 39 cm. This threshold corresponded to a clear dietary transition: from primarily consuming aquatic insects, to feeding predominantly on fish, anurans, and freshwater crabs. This transition likely reflects morphological and physiological adaptations associated with gigantism, enabling the exploitation of large prey. Our findings suggest that gigantism may be adaptive in predators such as giant salamanders by promoting ecological opportunities, allowing individuals to access high trophic levels through extensive growth and ultimately function as apex predators. These results contribute to a broader understanding of the ecological consequences of body size evolution in predatory vertebrates, highlighting how extreme growth can reshape species' ecological roles.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Environmental sciences & ecology Zoology Life sciences: Multidisciplinary, general & others Aquatic sciences & oceanology
Author, co-author :
Duret, Clément ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Lejeune, Benjamin ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA) ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Lepoint, Gilles ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Ecologie trophique et isotopique
Bartet, Tiphanie; Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of reSearch (FOCUS), University of Liège Liège Belgium
Okada, Sumio; The Hanzaki Research Institute of Japan, Asago, Hyogo, Japan
Fukushima, Keitaro ; Faculty of Food and Agricultural Sciences, Fukushima University Fukushima city Fukushima Japan
Kishida, Osamu ; Wakayama Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo Hokkaido, Japan
Denoël, Mathieu ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Language :
English
Title :
A giant's appetite: how body size drives the diet and trophic position of the Japanese giant salamander
Publication date :
2026
Journal title :
Oikos
ISSN :
0030-1299
eISSN :
1600-0706
Publisher :
Wiley
Volume :
2026
Issue :
1
Pages :
e11831
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
14. Life below water
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège FSR - Université de Liège. Fonds spéciaux pour la recherche JSPS - Japan Society for the Promotion of Science FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Anderson, M. J., Gorley, R. N. and Clarke, K. R. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. – PRIMER-E.
Bonett, R. M., Chippindale, P. T., Moler, P. E., Devender, R. W. V. and Wake, D. B. 2009. Evolution of gigantism in amphiumid salamanders. – PLoS One 4: e5615.
Bonett, R. M., Ledbetter, N. M., Hess, A. J., Herrboldt, M. A. and Denoël, M. 2022. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. – Dev. Dyn. 251: 957–972.
Brose, U. 2010. Body-mass constraints on foraging behaviour determine population and food-web dynamics. – Funct. Ecol. 24: 28–34.
Burress, E. D., Holcomb, J. M., Bonato, K. O. and Armbruster, J. W. 2016. Body size is negatively correlated with trophic position among cyprinids. – R. Soc. Open Sci. 3: 150652.
Clarke, A. and Johnston, N. M. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. – J. Anim. Ecol. 68: 893–905.
Clarke, K. R. and Gorley, R. N. 2015. PRIMER v7: user manual/tutorial. – PRIMER-E.
Cohen, J. E., Pimm, S. L., Yodzis, P. and Saldaña, J. 1993. Body sizes of animal predators and animal prey in food webs. – J. Anim. Ecol. 62: 67–78.
Cohen, J. E., Jonsson, T. and Carpenter, S. R. 2003. Ecological community description using the food web, species abundance and body size. – Proc. Natl Acad. Sci. USA 100: 1781–1786.
Coplen, T. B. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. – Rapid Commun. Mass Spectrom. 25: 2538–2560.
Costa, A., Salvidio, S., Posillico, M., Altea, T., Matteucci, G. and Romano, A. 2014. What goes in does not come out: different non-lethal dietary methods give contradictory interpretation of prey selectivity in amphibians. – Amphib. Reptilia 35: 255–262.
Delany, M. F. and Abercrombie, C. L. 1986. American alligator food habits in northcentral Florida. – J. Wildl. Manage. 50: 348–353.
Denoël, M. and Joly, P. 2001a. Adaptive significance of facultative paedomorphosis in Triturus alpestris (Amphibia, Caudata): resource partitioning in an alpine lake. – Freshw. Biol. 46: 1387–1396.
Denoël, M. and Joly, P. 2001b. Size-related predation reduces intramorph competition in paedomorphic Alpine newts. – Can. J. Zool. 79: 943–948.
Denoël, M., Whiteman, H. H. and Wissinger, S. A. 2006. Temporal shift of diet in alternative cannibalistic morphs of the tiger salamander. – Biol. J. Linn. Soc. 89: 373–382.
Duret, C., Bartet, T., Hambuckers, A., Kishida, O., Okada, S., Taguchi, Y., Takahashi, M. K. and Denoël, M. 2025a. Loss of habitat suitability and distribution range of the endangered Japanese giant salamander under climate change. – Front. Biogeogr. 2025: e133105.
Duret, C., Lejeune, B., Lepoint, G., Bartet, T., Okada, S., Fukushima, K., Kishida, O. and Denoël, M. 2025b. Data from: A giant's appetite: how body size drives the diet and trophic position of the Japanese giant salamander. – Dryad Digital Repository, https://doi.org/10.5061/dryad.w9ghx3g1x.
Echeverria, A., Botta, S., Marmontel, M., Melo-Santos, G., Fruet, P., Oliveira-da-Costa, M., Pouilly, M., Di Tullio, J. and Van Damme, P. A. 2022. Trophic ecology of Amazonian River dolphins from three rivers in Brazil and Bolivia. – Mamm. Biol. 102: 1687–1696.
Elton, C. S. 1927. Animal ecology. – Univ. of Chicago Press.
Estes, J. A. et al. 2011. Trophic downgrading of planet Earth. – Science 333: 301–306.
Fabre, A.-C., Bardua, C., Bon, M., Clavel, J., Felice, R. N., Streicher, J. W., Bonnel, J., Stanley, E. L., Blackburn, D. C. and Goswami, A. 2020. Metamorphosis shapes cranial diversity and rate of evolution in salamanders. – Nat. Ecol. Evol. 4: 1129–1140.
Ficetola, G. F. and Denoël, M. 2009. Ecological thresholds: an assessment of methods to identify abrupt changes in species–habitat relationships. – Ecography 32: 1075–1084.
Fry, B. 1988. Food web structure on Georges Bank from stable C, N and S isotopic compositions. – Limnol. Oceanogr. 33: 1182–1190.
Fry, B. 2006. Stable isotope ecology. – Springer.
Gao, K.-Q. and Shubin, N. H. 2003. Earliest known crown-group salamanders. – Nature 422: 424–428.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. 2001. Effects of size and temperature on metabolic rate. – Science 293: 2248–2251.
Govan, E., Jackson, A. L., Inger, R., Bearhop, S. and Parnell, A. C. 2023. simmr: a package for fitting stable isotope mixing models in R. – Preprint, https://arxiv.org/abs/2306.07817
Hammerschlag, N., Schmitz, O. J., Flecker, A. S., Lafferty, K. D., Sih, A., Atwood, T. B., Gallagher, A. J., Irschick, D. J., Skubel, R. and Cooke, S. J. 2019. Ecosystem function and services of aquatic predators in the Anthropocene. – Trends Ecol. Evol. 34: 369–383.
Hanson, J. O., Salisbury, S. W., Campbell, H. A., Dwyer, R. G., Jardine, T. D. and Franklin, C. E. 2015. Feeding across the food web: the interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus). – Austral Ecol. 40: 275–286.
Heiss, E., Natchev, N., Gumpenberger, M., Weissenbacher, A. and Van Wassenbergh, S. 2013. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. – J. R. Soc. Interface 10: 20121028.
Hildrew, A. G., Raffaelli, D. G. and Edmonds-Brown, R. 2007. Body size: the structure and function of aquatic ecosystems. – Cambridge Univ. Press.
Hyslop, E. J. 1980. Stomach contents analysis – a review of methods and their application. – J. Fish Biol. 17: 411–429.
Ishikawa, K., Taguchi, Y., Kobayashi, R., Anzai, W., Hayashi, T. and Tokita, M. 2022. Cranial skeletogenesis of one of the largest amphibians, Andrias japonicus, provides insight into ontogenetic adaptations for feeding in salamanders. – Zool. J. Linn. Soc. 195: 299–314.
Joly, P. 1987. Le régime alimentaire des amphibiens: méthodes d'étude. – Alytes 6: 11–17.
Kawai, T. and Tanida, K. 2018. Aquatic insects of Japan: manual with keys and illustrations. – Tokai Univ. Press.
LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. – Annu. Rev. Ecol. Syst. 20: 97–117.
Lang, J. W. 1987. Crocodilian behaviour: implications for management. – In: Webb, G. J. W. et al. (eds), Wildlife management: crocodiles and alligators. Surrey Beatty & Sons, pp. 273–294.
Layman, C. A., Winemiller, K. O., Arrington, D. A. and Jepsen, D. B. 2005. Body size and trophic position in a diverse tropical food web. – Ecology 86: 2530–2535.
Leaper, R. and Huxham, M. 2002. Size constraints in a real food web: predator, parasite and prey body-size relationships. – Oikos 99: 443–456.
Lejeune, B., Sturaro, N., Lepoint, G. and Denoël, M. 2018. Facultative paedomorphosis as a mechanism promoting intraspecific niche differentiation. – Oikos 127: 427–439.
Lejeune, B., Bissey, L., Didaskalou, E. A., Sturaro, N., Lepoint, G. and Denoël, M. 2021. Progenesis as an intrinsic factor of ecological opportunity in a polyphenic amphibian. – Funct. Ecol. 35: 546–560.
Lejeune, B., Kopp, D., Mehault, S. and Mouchet, M. A. 2022. Assessing the diet and trophic level of marine fauna in a fishing ground subject to discarding activity using stable isotopes. – PLoS One 17: e0268758.
Lejeune, B., Clément, V., Nothomb, T., Lepoint, G. and Denoël, M. 2023. Trophic interactions between native newts and introduced mosquitofish suggest invaded ponds may act as demographic sinks. – Biol. Invas. 25: 2993–3007.
Lunghi, E., Cianferoni, F., Corti, C., Zhao, Y., Manenti, R., Ficetola, G. F. and Mancinelli, G. 2022. The trophic niche of subterranean populations of Speleomantes italicus. – Sci. Rep. 12: 18257.
Lunghi, E., Ficetola, G. F., Manenti, R. and Mancinelli, G. 2024. Yearly variation in individual diet specialization: evidence from cave salamanders. – Global Ecol. Conserv. 51: e02864.
Matsui, M. and Maeda, N. 2018. Encyclopedia of Japanese frogs. – Bun-ichi Sogo Shuppan.
Matsumoto, R., Fujiwara, S. and Evans, S. E. 2024. The anatomy and feeding mechanism of the Japanese giant salamander (Andrias japonicus). – J. Anat. 244: 679–707.
McCutchan, J. H., Lewis Jr, W. M., Kendall, C. and McGrath, C. C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. – Oikos 102: 378–390.
Miller, T. E. X. and Rudolf, V. H. W. 2011. Thinking inside the box: community-level consequences of stage-structured populations. – Trends Ecol. Evol. 26: 457–466.
Moran, A. L. and Woods, H. A. 2012. Why might they be giants? Towards an understanding of polar gigantism. – J. Exp. Biol. 215: 1995–2002.
Muggeo, V. M. R. 2003. Estimating regression models with unknown break-points. – Stat. Med. 22: 3055–3071.
Muggeo, V. M. R. 2008. segmented: an R package to fit regression models with broken-line relationships. – R News 8: 20–25.
Nakazawa, T. 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. – Popul. Ecol. 57: 347–354.
Nilsson, K. A., McCann, K. S. and Caskenette, A. L. 2018. Interaction strength and stability in stage-structured food web modules. – Oikos 127: 1494–1505.
Nosaka, M., Katayama, N. and Kishida, O. 2015. Feedback between size balance and consumption strongly affects the consequences of hatching phenology in size-dependent predator–prey interactions. – Oikos 124: 225–234.
Okada, S., Utsunomiya, T., Okada, T., Felix, Z. I. and Ito, F. 2008. Characteristics of Japanese giant salamander (Andrias japonicus) populations in two small tributary streams in Hiroshima Prefecture, western Honshu, Japan. – Herpetol. Conserv. Biol. 3: 192–202.
Ou, C., Montaña, C. G. and Winemiller, K. O. 2017. Body size–trophic position relationships among fishes of the lower Mekong Basin. – R. Soc. Open Sci. 4: 160645.
Parnell, A. C., Inger, R., Bearhop, S. and Jackson, A. L. 2010. Source partitioning using stable isotopes: coping with too much variation. – PLoS One 5: e9672.
Peters, R. H. 1986. The ecological implications of body size, vol. 2. – Cambridge Univ. Press.
Peterson, C. L., Reed, J. W. and Wilkinson, R. F. 1989. Seasonal food habits of Cryptobranchus alleganiensis (caudata: Cryptobranchidae). – Southwest. Nat. 34: 438–441.
Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods and assumptions. – Ecology 83: 703–718.
Potapov, A. M., Brose, U., Scheu, S. and Tiunov, A. V. 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. – Am. Nat. 194: 823–839.
Quezada-Romegialli, C., Jackson, A. L., Hayden, B., Kahilainen, K. K., Lopes, C. and Harrod, C. 2018. tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. – Methods Ecol. Evol. 9: 1592–1599.
Radloff, F. G. T., Hobson, K. A. and Leslie, A. J. 2012. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin. – Isot. Environ. Health Stud. 48: 439–456.
Reuman, D. C. and Cohen, J. E. 2004. Trophic links' length and slope in the Tuesday Lake food web with species' body mass and numerical abundance. – J. Anim. Ecol. 73: 852–866.
Riede, J. O., Brose, U., Ebenman, B., Jacob, U., Thompson, R., Townsend, C. R. and Jonsson, T. 2011. Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems. – Ecol. Lett. 14: 169–178.
Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J., Nicol, S., Pershing, A. and Smetacek, V. 2014. Whales as marine ecosystem engineers. – Front. Ecol. Environ. 12: 377–385.
Romanuk, T. N., Hayward, A. and Hutchings, J. A. 2011. Trophic level scales positively with body size in fishes. – Global Ecol. Biogeogr. 20: 231–240.
Romero-Romero, S., Molina-Ramírez, A., Höfer, J. and Acuña, J. L. 2016. Body size-based trophic structure of a deep marine ecosystem. – Ecology 97: 171–181.
Roos, A. M. de and Persson, A. 2013. Population and community ecology of ontogenetic development. – Princeton Univ. Press.
Rudolf, V. H. W. and Lafferty, K. D. 2011. Stage structure alters how complexity affects stability of ecological networks. – Ecol. Lett. 14: 75–79.
Sánchez-Hernández, J., Nunn, A. D., Adams, C. E. and Amundsen, P.-A. 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. – Biol. Rev. 94: 539–554.
Segura, A. M., Franco-Trecu, V., Franco-Fraguas, P. and Arim, M. 2015. Gape and energy limitation determine a humped relationship between trophic position and body size. – Can. J. Fish. Aquat. Sci. 72: 198–205.
Song, M. T. 1994. Food habit of giant salamander of China. – Chin. J. Zool. 29: 38–41, in Chinese.
Stephens, R. B., Shipley, O. N. and Moll, R. J. 2023. Meta-analysis and critical review of trophic discrimination factors (ΔC and ΔN): importance of tissue, trophic level and diet source. – Funct. Ecol. 37: 2535–2548.
Tago, K. 1931. The salamanders of Japan. – Geisho-do, in Japanese.
Takatsu, K. and Kishida, O. 2015. Predator cannibalism can intensify negative impacts on heterospecific prey. – Ecology 96: 1887–1898.
Tayasu, I., Hirasawa, R., Ogawa, N. O., Ohkouchi, N. and Yamada, K. 2011. New organic reference materials for carbon- and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. – Limnology 12: 261–266.
Thomas, S. M. and Crowther, T. W. 2015. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. – J. Anim. Ecol. 84: 861–870.
Thorbjarnarson, J. B. 1990. Notes on the feeding behavior of the gharial (Gavialis gangeticus) under semi-natural conditions. – J. Herpetol. 24: 99–100.
Tochimoto, T. 2002. Studies of the Japanese giant salamanders. X. Food habits I. – Hyogo Biol. 12: 134–139, in Japanese.
Vejřík, L., Vejříková, I., Blabolil, P., Eloranta, A. P., Kočvara, L., Peterka, J., Sajdlová, Z., Chung, S. H. T., Šmejkal, M., Kiljunen, M. and Čech, M. 2017. European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. – Sci. Rep. 7: 15970.
Vermeij, G. J. 2016. Gigantism and its implications for the history of life. – PLoS One 11: e0146092.
Villamarín, F., Jardine, T. D., Bunn, S. E., Marioni, B. and Magnusson, W. E. 2018. Body size is more important than diet in determining stable-isotope estimates of trophic position in crocodilians. – Sci. Rep. 8: 2020.
Werner, E. E. and Gilliam, J. F. 1984. The ontogenetic niche and species interactions in size-structured populations. – Annu. Rev. Ecol. Syst. 15: 393–425.
Wood, S. N. 2017. Generalized additive models: an introduction with R. – Chapman and Hall/CRC.
Woodward, G. and Hildrew, A. G. 2002. Body-size determinants of niche overlap and intraguild predation within a complex food web. – J. Anim. Ecol. 71: 1063–1074.
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A. and Warren, P. H. 2005. Body size in ecological networks. – Trends Ecol. Evol. 20: 402–409.
Zambrano, L., Valiente, E. and Vander Zanden, M. J. 2010. Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. – Biol. Invas. 12: 3061–3069.
Zhai, R., Zhao, C., Chang, L., Liu, J., Zhao, T., Jiang, J. and Zhu, W. 2024. The role of gut-liver axis in the heat susceptibility of Chinese giant salamander. – Preprint, https://doi.org/10.21203/rs.3.rs-5322465/v1