[fr] Aphids, major insect pests of forests, cereal, vegetable, fruit and ornamental crops, are controlled mainly by synthetic insecticides. However, due to the adverse effects of these ones on the environment and the development of resistant populations of aphids, it is essential to adopt alternative control. Aphid saliva plays a key role during insect feeding. It contains a wide variety of compounds whose specificity of action allows to dissect some physiological mechanisms that govern the interactions between the insect and its host. Some identified compounds were found to induce defences of their host and are therefore considered promising tools in the fight against insect pests. One of the possible strategies is based on research and recovery of substances found in aphid saliva. This approach has been developed especially in hematophagous insects such as mosquitoes. The current state of knowledge about aphid saliva is discussed in this article in parallel with saliva of chewing phytophagous and hematophagous insects.
Alborn H.T. et al., 1997. An elicitor of plants volatiles from beet armyworm oral secretion. Science, 276(5314), 945-949.
Alborn H.T. et al., 2007. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc. Natl Acad. Sci. USA, 104(32), 12976-12981.
Arcà B. et al., 2005. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J. Exp. Biol., 208(20), 3971-3986.
Arcà B. et al., 2007. An insight into the sialome of the adult female mosquito Aedes albopictus. Insect Biochem. Mol. Biol., 37(2), 107-127.
Baldini C. et al., 2008. Proteomic analysis of the saliva: a clue for understanding primary from secondary Sjögren's syndrome? Autoimmunity Rev., 38(1), 42-58.
Bede J.C, Musser R.O., Felton G.W. & Korth K.L., 2006. Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol. Biol., 60(4), 519-531.
Boisson B. et al., 2006. Gene silencing in mosquito salivary glands by RNAi. FEBS Lett., 580(8), 1988-1992.
Calvo E. et al., 2004. The transcriptome of adult female Anopheles darlingi salivary glands. Insect. Mol. Biol., 13(1), 73-88.
Calvo E. & Ribeiro J.M., 2006. A novel secreted endonuclease from Culex quinquefasciatus salivary glands. J. Exp. Biol., 209(14), 2651-2659.
Calvo E., Pham V.M. & Ribeiro J.M.C., 2008. An insight into the sialotranscriptome of the non-blood feeding Toxorhynchites amboinensis mosquito. Insect Biochem. Mol. Biol., 38(5), 499-507.
Carolan J.C. et al., 2009. The secreted proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics, 9(9), 2457-2467.
Carrol M.J., Schmelz E.A. & Teal P.E.A., 2008. The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. J. Chem. Ecol., 34(3), 291-300.
Champagne D.E. et al., 1995. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family. Proc. Natl Acad. Sci. USA, 92(3), 694-698.
Cherqui A. & Tjallingii W.F., 2000. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol., 46(8), 1177-1186.
De Moreas CM. et al., 1998. Herbivore-infested plants selectively attract parasitoids. Nature, 393, 570-573.
Denny P. et al., 2008. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. Proteome Res., 7(5), 1994-2006.
Després L., David J.P. & Gallet C, 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol., 22(6), 298-307.
Dinglasan R.R. & Jacobs-Lorena M., 2008. Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol., 24(8), 364-370.
Dodds M.W.J., Johnson D.A. & Yeh C.K., 2005. Health benefits of saliva: a review. J. Dent., 33(3), 223-233.
Eichenseer H. et al., 1999. Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol., 42(1), 99-109.
Francischetti I.M. et al., 2002. Towards a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J. Exp. Biol., 205(16), 2429-2451.
Funk CJ., 2001. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch. Insect Biochem. Physiol., 46(4), 165-174.
Gatehouse J.A., 2002. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol., 156(2), 145-169.
Gosset V. et al., 2009. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. J. Exp. Bot., 60(4), 1231-1240.
Guo G.X., Liu Y., Yang JJ. & Ma X.Z., 2006. Identification, activity and function of several salivary enzymes secreted by Macrosiphum avenae. Acta Entomol. Sinica, 49(5), 768-774.
Harmel N. et al., 2007. Role of terpenes from aphid infested potato as indirect defence on Episyrphus balteatus behaviour. Insect Sci., 14(1), 57-63.
Harmel N., Francis F., HaubrugeÉ. & Giordanengo P., 2008a. Physiologie des interactions entre pomme de terre et pucerons: vers une nouvelle stratégie de lutte basée sur les systèmes de défense de la plante. Cah. Agric, 17(14), 395-400.
Harmel N. et al., 2008b. Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol. Biol., 17(2), 165-174.
Hu S. et al., 2006. Human salivaproteome and transcriptome. J. Dent. Res., 85(12), 1129-1133.
Lait G.C., Alborn H.T., Teal P.E.A. & Tumlinson III J.H., 2003. Rapid biosynthesis of N-linolenoyl-l-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc. Natl Acad. Sci. USA, 100(12), 7027-7032.
Li X., Schuler M.A. & Berenbaum M.R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol., 52, 231-253
Ma R., Reese J.C., Black W.C. IV & Bramel-Cox P., 1990. Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, Schizaphis graminum (Homoptera: Aphididae). J. Insect Physiol., 36(7), 507-512.
Madhusudhan V.V. & Miles P.W., 1998. Mobility of salivary components as a possible reason for differences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid. Entomol. Exp. Appl., 86(1), 25-39.
Mattiacci L., Dicke M. & Posthumus M.A., 1995. P-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl Acad. Sci. USA, 92(6), 2036-2040.
Miles P.W. & Peng Z., 1989. Studies on the salivary physiology of plant bugs: detoxification of the phytochemicals by the salivary peroxidase of aphids. J. Insect Physiol., 35(11), 865-872.
Miles P.W. & Harrewijn P., 1991. Discharge by aphids of soluble secretions into dietary sources. Entomol. Exp. Appl., 59(2), 123-134.
Mori N., Alborn H.T., Teal P.E.A. & Tumlinson J.H., 2001. Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. J. Insect Physiol., 47(7), 749-757.
Musser R.O. et al., 2005. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in Solanaceous plants. Arch. Insect Biochem. Physiol., 58(2), 128-137.
Musser R.O. et al., 2006. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions. J. Chem. Ecol., 32(5), 981-992.
Mutti N.S., Park Y, Reese J.C. & Reeck G.R., 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci., 6, 38.
Mutti N.S. et al., 2008. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Natl Acad. Sci. USA, 105(29), 9965-9969.
Ni X.Z. et al., 2000. Hydrolase and oxido-reductase activities in Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae). Ann. Entomol. Soc. Am., 93(3), 595-601.
Owhashi M. et al., 2007. Identification of an eosinophil chemotactic factor from anopheline mosquitoes as a chitinase family protein. Parasitol. Res., 102(3), 357-363.
Paskewitz S.M., Li B. & Kajla M.K., 2008. Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae. Insect Mol. Biol., 17(3), 217-225.
Peng Z. & Miles P.W., 1991. Oxidases in the gut of an aphid, Macrosiphum rosae (L.) and their relation to dietary phenolics. J. Insect Physiol., 37(10), 779-787.
Qubbaj T., Reineke A. & Zebitz C.P.W., 2005. Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol. Exp. Appl., 115(1), 145-152.
Ribeiro J.M.C. & Francischetti I.M.B., 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol., 48, 73-88.
Ribeiro J.M.C. et al., 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quiquefasciatus. Insect Biochem. Mol. Biol., 34(6), 543-563.
Ribeiro J.M.C. et al., 2007. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics, 8(6).
Schmelz E.A. et al., 2007. Cowpea chloroplastic ATP synthase is the source of multiple plant defence elicitors during insect herbivory. Plant Physiol., 144(2), 793-805.
Spiteller D., Dettner K. & Boland W., 2000. Gut bacteria may be involved in interactions between plants, herbivores and their predators: microbial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles. Biol. Chem., 381(8), 755-762.
Thompson G.A. & Goggin F.L., 2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot., 57(4), 755-766.
Tjallingii W.F., 2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot., 57(4), 739-745.
Tumlinson J.H. & Lait C.G., 2005. Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Arch. Insect Biochem. Physiol., 58(2), 54-68.
Urbanska A., Tjallingii W.F., Dixon A.F.G. & Leszczynski B., 1998. Phenol oxidising enzymes in the grain aphid's saliva. Entomol. Exp. Appl., 86(2), 197-203.
Valenzuela J.G. et al., 2002. Towards a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem. Mol. Biol., 32(9), 1101-1122.
Valenzuela J.G. et al., 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol., 33(7), 717-732.
Voelckel C., Weisser W.W. & Baldwin I.T., 2004. An analysis of plant-aphid interactions by different microarray hybridization strategies. Mol. Ecol., 13(10), 3187-3195.
Walling L.L., 2000. The myriad plant responses to herbivores. J. Plant Growth Regul., 9(19), 195-216.
Will T., Tjallingii W.F., Thönnessen A. & van Bel AJ.E, 2007. Molecular sabotage of plant defense by aphid saliva. Proc. Natl Acad. Sci. USA, 104(25), 10536-10541.
Xie H. et al., 2005. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell. Proteomics, 4(11), 1826-1830.
Xie H. et al., 2008. Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Cell. Proteomics, 7(3), 486-498.
Yoshida S. et al., 2008. Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito. Blood, 111(4), 2007-2014.
Zhao J., Davis L.C. & Verpoorte R., 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv., 23(4), 283-333.
Zhu-Salzman K., Bi J.L. & Liu T.X., 2005. Molecular strategies of plant defense and insect counter-defense. Insect Sci., 12(1), 3-15.