The RNA Recognition Motif (RRM) of the Arabidopsis RS2Z32 and RS2Z33 splicing factors coordinates protein-protein and protein-RNA interactions, and contributes to their nucleocytoplasmic dynamics.
[en] The Arabidopsis splicing factors arginine/serine-rich zinc knuckle-containing proteins 32 and 33 (RS2Z32 and RS2Z33) are plant-specific members of the SR family. Here, we characterized both RS2Z32 and RS2Z33 by examining their expression profile at different stages of development and their spatial cellular distribution, as well as the contribution of their domains to the establishment of protein-protein interactions and to RNA binding specificity. We report that the RS2Z32 and RS2Z33 promoters are ubiquitously active during vegetative and reproductive growth, and that both RS2Z splicing factors localize in the nucleus (except the nucleolus). We show that the C-terminal arginine/serine-rich (RS) domain, but not the serine/proline-rich (SP) extension, is a determinant of nuclear localization. We demonstrate that their RNA recognition motif (RRM) domain specifically binds pyrimidine-rich RNA motifs via three residues (Y14, Y46, F48), and is also involved in protein-protein interactions with at least three SR proteins, namely SR45, SCL30, and SR34. Finally, we show that mutations in RNA-binding domains (i.e. RRM and zinc knuckles, ZnKs) affect the nucleocytoplasmic dynamics of both RS2Z proteins. Our findings provide molecular evidence for the involvement of plant-specific SR splicing factors into the regulation of the splicing process.
Vanden Broeck, Arnaud ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Kerff, Frédéric ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Farnir, Frédéric ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Hanikenne, Marc ✱; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Motte, Patrick ✱; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
✱ These authors have contributed equally to this work.
Language :
English
Title :
The RNA Recognition Motif (RRM) of the Arabidopsis RS2Z32 and RS2Z33 splicing factors coordinates protein-protein and protein-RNA interactions, and contributes to their nucleocytoplasmic dynamics.
Abramson J, Adler J, Dunger J, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493-500.
Albuquerque-Martins R, Szakonyi D, Rowe J, Jones AM, Duque P. 2023. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis. Plant Communications 4, 100495.
Aubol BE, Wu G, Keshwani MM, Movassat M, Fattet L, Hertel KJ, Fu X-D, Adams JA. 2016. Release of SR proteins from CLK1 by SRPK1: a symbiotic kinase system for phosphorylation control of pre-mRNA splicing. Molecular Cell 63, 218-228.
Aubol BE, Hailey KL, Fattet L, Jennings PA, Adams JA. 2017. Redirecting SR protein nuclear trafficking through an allosteric platform. Journal of Molecular Biology 429, 2178-2191.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37, W202-W208.
Barbosa Dos Santos SI, Park SW. 2019. Versatility of cyclophilins in plant growth and survival: a case study in Arabidopsis. Biomolecules 9, 20.
Barta A, Kalyna M, Reddy ASN. 2010. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. The Plant Cell 22, 2926-2929.
Bender J, Fink GR. 1994. AFC1, a LAMMER kinase from Arabidopsis thaliana, activates STE12-dependent processes in yeast. Proceedings of the National Academy of Sciences, USA 91, 12105-12109.
Califice S, Baurain D, Hanikenne M, Motte P. 2012. A single ancient origin for prototypical serine/arginine-rich splicing factors. Plant Physiology 158, 546-560.
Cavaloc Y, Bourgeois CF, Kister L, Stévenin J. 1999. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA 5, 468-483.
Chen M, Manley JL. 2009. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Reviews. Molecular Cell Biology 10, 741-754.
Cléry A, Blatter M, Allain FH-T. 2008. RNA recognition motifs: boring? Not quite. Current Opinion in Structural Biology 18, 290-298.
Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Research 14, 1188-1190.
Cruz TMD, Carvalho RF, Richardson DN, Duque P. 2014. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. International Journal of Molecular Sciences 15, 17541-17564.
Curtis MD, Grossniklaus U. 2003. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology 133, 462-469.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5-17.
Daubner GM, Cléry A, Allain FH-T. 2013. RRM-RNA recognition: NMR or crystallography... and new findings. Current Opinion in Structural Biology 23, 100-108.
De Franco S, Vandenameele J, Brans A, et al. 2019. Exploring the suitability of RanBP2-type zinc fingers for RNA-binding protein design. Scientific Reports 9, 2484.
Drechsel G, Kahles A, Kesarwani AK, Stauffer E, Behr J, Drewe P, Rätsch G, Wachter A. 2013. Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome. The Plant Cell 25, 3726-3742.
English AC, Patel KS, Loraine AE. 2010. Prevalence of alternative splicing choices in Arabidopsis thaliana. BMC Plant Biology 10, 102.
Fanara S, Schloesser M, Hanikenne M, Motte P. 2022. Altered metal distribution in the sr45-1 Arabidopsis mutant causes developmental defects. The Plant Journal 110, 1332-1352.
Fanara S, Schloesser M, Joris M, De Franco S, Vandevenne M, Kerff F, Hanikenne M, Motte P. 2024. The Arabidopsis SR45 splicing factor bridges the splicing machinery and the exon-exon junction complex. Journal of Experimental Botany 75, 2280-2298.
Feng G, Yoo M-J, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. 2020. Jasmonate induced alternative splicing responses in Arabidopsis. Plant Direct 4, e00245.
Goers ES, Purcell J, Voelker RB, Gates DP, Berglund JA. 2010. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Research 38, 2467-2484.
Gullerova M, Barta A, Lorković ZJ. 2006. Atcyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II. RNA 12, 631-643.
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391-395.
Huang X-Y, Niu J, Sun M-X, Zhu J, Gao J-F, Yang J, Zhou Q, Yang Z-N. 2013. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. The Plant Cell 25, 637-648.
Jo SH, Park HJ, Lee A, et al. 2022. The Arabidopsis cyclophilin CYP18-1 facilitates PRP18 dephosphorylation and the splicing of introns retained under heat stress. The Plant Cell 34, 2383-2403.
Kalyna M, Lopato S, Barta A. 2003. Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development. Molecular Biology of the Cell 14, 3565-3577.
Kalyna M, Simpson CG, Syed NH, et al. 2012. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Research 40, 2454-2469.
Kashkan I, Timofeyenko K, Růžička K. 2022. How alternative splicing changes the properties of plant proteins. Quantitative Plant Biology 3, e14.
Kataoka N, Bachorik JL, Dreyfuss G. 1999. Transportin-SR, a nuclear import receptor for SR proteins. Journal of Cell Biology 145, 1145-1152.
Kim D-Y, Scalf M, Smith LM, Vierstra RD. 2013. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. The Plant Cell 25, 1523-1540.
Königs V, de Oliveira Freitas Machado C, Arnold B, et al. 2020. SRSF7 maintains its homeostasis through the expression of split-ORFs and nuclear body assembly. Nature Structural & Molecular Biology 27, 260-273.
Köster T, Venhuizen P, Lewinski M, et al. 2025. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. New Phytologist 247, 738-759.
Lai M-C, Lin R-I, Huang S-Y, Tsai C-W, Tarn W-Y. 2000. A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. Journal of Biological Chemistry 275, 7950-7957.
Lai MC, Lin RI, Tarn WY. 2001. Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proceedings of the National Academy of Sciences, USA 98, 10154-10159.
Laloum T, Martín G, Lewinski M, Yanez RJR, Köster T, Staiger D, Duque P. 2023. An Arabidopsis SR protein relieving ABA inhibition of seedling establishment represses ABA-responsive alternative splicing. bioRxiv doi: 10.1101/2023.12.19.572415. [Preprint].
Liang Q, Geng Q, Jiang L, Liang M, Li L, Zhang C, Wang W. 2019. Protein methylome analysis in Arabidopsis reveals regulation in RNA-related processes. Journal of Proteomics 213, 103601.
Lopato S, Forstner C, Kalyna M, Hilscher J, Langhammer U, Indrapichate K, Lorković ZJ, Barta A. 2002. Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. Journal of Biological Chemistry 277, 39989-39998.
Lorković ZJ, Barta A. 2004. Compartmentalization of the splicing machinery in plant cell nuclei. Trends in Plant Science 9, 565-568.
Lorković ZJ, Lopato S, Pexa M, Lehner R, Barta A. 2004. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA splicing. Journal of Biological Chemistry 279, 33890-33898.
Lorković Z, Hilscher J, Barta A. 2008. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei. Experimental Cell Research 314, 3175-3186.
Manley JL, Krainer AR. 2010. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes & Development 24, 1073-1074.
Manuel JM, Guilloy N, Khatir I, Roucou X, Laurent B. 2023. Re-evaluating the impact of alternative RNA splicing on proteomic diversity. Frontiers in Genetics 14, 1089053.
Maris C, Dominguez C, Allain FH-T. 2005. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS Journal 272, 2118-2131.
Marquez Y, Höpfler M, Ayatollahi Z, Barta A, Kalyna M. 2015. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Research 25, 995-1007.
Meyer K, Koester T, Staiger D. 2015. Pre-mRNA splicing in plants: in vivo functions of RNA-binding proteins implicated in the splicing process. Biomolecules 5, 1717-1740.
Ni X, Joerger AC, Chaikuad A, Knapp S. 2023. Structural insights into a regulatory mechanism of FIR RRM1-FUSE interaction. Open Biology 13, 230031.
Pabis M, Popowicz GM, Stehle R, et al. 2019. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Research 47, 1011-1029.
Palusa SG, Ali GS, Reddy ASN. 2007. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. The Plant Journal 49, 1091-1107.
Palusa SG, Reddy ASN. 2010. Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay. New Phytologist 185, 83-89.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF Chimerax: structure visualization for researchers, educators, and developers. Protein Science 30, 70-82.
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45.
Pietzenuk B, Markus C, Gaubert H, Bagwan N, Merotto A, Bucher E, Pecinka A. 2016. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biology 17, 209.
Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P. 2010. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiology 153, 273-284.
Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P. 2013. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. The Plant Cell 25, 901-926.
Shi H, Xu R-M. 2003. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes & Development 17, 971-976.
Spielmann J, Ahmadi H, Scheepers M, et al. 2020. The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. Plant, Cell & Environment 43, 2143-2157.
Stankovic N, Schloesser M, Joris M, Sauvage E, Hanikenne M, Motte P. 2016. Dynamic distribution and interaction of the Arabidopsis SRSF1 subfamily splicing factors. Plant Physiology 170, 1000-1013.
Talke IN, Hanikenne M, Krämer U. 2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 142, 148-167.
Thompson HL, Shen W, Matus R, et al. 2023. MERISTEM-DEFECTIVE regulates the balance between stemness and differentiation in the root meristem through RNA splicing control. Development 150, dev201476.
Tillemans V, Dispa L, Remacle C, Collinge M, Motte P. 2005. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. The Plant Journal 41, 567-582.
Tillemans V, Leponce I, Rausin G, Dispa L, Motte P. 2006. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. The Plant Cell 18, 3218-3234.
Uemura Y, Oshima T, Yamamoto M, Reyes CJ, Costa Cruz PH, Shibuya T, Kawahara Y. 2017. Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing. Genes to Cells 22, 785-798.
Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB. 2006. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580-586.
Wang T, Wang X, Wang H, et al. 2023. Arabidopsis SRPKII family proteins regulate flowering via phosphorylation of SR proteins and effects on gene expression and alternative splicing. New Phytologist 238, 1889-1907.
Xu S, Zhang Z, Jing B, Gannon P, Ding J, Xu F, Li X, Zhang Y. 2011. Transportin-SR is required for proper splicing of Resistance genes and plant immunity. PLoS Genetics 7, e1002159.
Yan Q, Xia X, Sun Z, Fang Y. 2017. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes. PLoS Genetics 13, e1006663.
Yang Q, Coseno M, Gilmartin GM, Doublié S. 2011. Crystal structure of a human cleavage factor CFI(m)25/CFI(m)68/RNA complex provides an insight into poly(A) site recognition and RNA looping. Structure 19, 368-377.
Yu Y, Zhang H, Long Y, Shu Y, Zhai J. 2022. Plant public RNA-seq database: a comprehensive online database for expression analysis of ∼45 000 plant public RNA-Seq libraries. Plant Biotechnology Journal 20, 806-808.
Zeke A, Schád E, Horváth T, Abukhairan R, Szabó B, Tantos A. 2022. Deep structural insights into RNA-binding disordered protein regions. Wiley Interdisciplinary Reviews: RNA 13, e1714.
Zhang H, Zhang F, Yu Y, Feng L, Jia J, Liu B, Li B, Guo H, Zhai J. 2020. A comprehensive online database for exploring approximately 20,000 public Arabidopsis RNA-Seq libraries. Molecular Plant 13, 1231-1233.
Zhang X-N, Mount SM. 2009. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development. Plant Physiology 150, 1450-1458.