[en] This review provides an overview of recent advancements in applying eutectic solvents (ES) to extract and quantify a wide range of environmental contaminants, including pharmaceuticals, personal care products, plasticizers, metals, and emerging pollutants. The unique physicochemical properties of ES, such as low volatility, thermal stability, and tunable solvation capabilities, align with green analytical chemistry principles, making them attractive alternatives to conventional organic solvents. In particular, ES-based microextraction techniques have emerged as promising strategies to reduce hazardous solvent consumption and minimize waste. Despite these advantages, specific challenges persist, including insufficient toxicity and biodegradability data, incomplete understanding of their long-term environmental fate, and difficulties in meeting regulatory requirements when using ES as extraction media. By evaluating current practices and pinpointing areas that require further investigation, this review aims to provide a comprehensive overview of the state-of-the-art, guiding future research toward more informed applications of ES in environmental contaminant analysis and fostering the adoption of sustainable microextraction approaches.
Disciplines :
Chemistry Environmental sciences & ecology
Author, co-author :
Schincaglia, Andrea ; Université de Liège - ULiège > TERRA Research Centre ; University of Ferrara, Department of Chemical Pharmaceutical, and Agricultural Sciences, Ferrara, Italy
Cavazzini, Alberto; University of Ferrara, Department of Chemical Pharmaceutical, and Agricultural Sciences, Ferrara, Italy
Pasti, Luisa; University of Ferrara, Department of Environmental Science and Prevention, Ferrara
Purcaro, Giorgia ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Beccaria, Marco ; Université de Liège - ULiège > Molecular Systems (MolSys) ; University of Ferrara, Department of Chemical Pharmaceutical, and Agricultural Sciences, Ferrara, Italy
Language :
English
Title :
Eutectic solvent mixtures in environmental contaminants analysis: A review on current trends and future perspectives
Ciampi, P., Esposito, C., Cassiani, G., Deidda, G.P., Flores-Orozco, A., Rizzetto, P., et al. Contamination presence and dynamics at a polluted site: spatial analysis of integrated data and joint conceptual modeling approach. J. Contam. Hydrol, 248, 2022, 104026, 10.1016/J.JCONHYD.2022.104026.
Farré, M., Kantiani, L., Petrovic, M., Pérez, S., Barceló, D., Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J. Chromatogr. A 1259 (2012), 86–99, 10.1016/J.CHROMA.2012.07.024.
Sauvé, S., Desrosiers, M., A review of what is an emerging contaminant. Chem. Cent. J 8 (2014), 1–7, 10.1186/1752-153X-8-15/FIGURES/2.
McCord, J.P., Groff, L.C., Sobus, J.R., Quantitative non-targeted analysis: bridging the gap between contaminant discovery and risk characterization. Environ. Int, 158, 2022, 10.1016/j.envint.2021.107011.
Substance Registry Services US EPA, n.d. https://cdxapps.epa.gov/oms-substance-registry-services/search (accessed October 31, 2024).
CCL 5 Technical Support Documents US EPA n.d. https://www.epa.gov/ccl/ccl-5-technical-support-documents (accessed October 31, 2024).
Puri, M., Gandhi, K., Kumar, M.S., Emerging environmental contaminants: a global perspective on policies and regulations. J. Environ. Manage, 332, 2023, 10.1016/j.jenvman.2023.117344.
Naidu, R., Jit, J., Kennedy, B., Arias, V., Emerging contaminant uncertainties and policy: the chicken or the egg conundrum. Chemosphere 154 (2016), 385–390, 10.1016/J.CHEMOSPHERE.2016.03.110.
Parida, V.K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B., Gupta, A.K., Emerging contaminants in wastewater: a critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. J. Environ. Chem. Eng, 9, 2021, 105966, 10.1016/J.JECE.2021.105966.
Farré, M., Barceló, D., Analysis of emerging contaminants in food. TrAC Trend. Analy. Chem. 43 (2013), 240–253, 10.1016/J.TRAC.2012.12.003.
Petrovic, M., Farré, M., de Alda, M.L., Perez, S., Postigo, C., Köck, M., et al. Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 1217 (2010), 4004–4017, 10.1016/J.CHROMA.2010.02.059.
Pena-Pereira, F., Kloskowski, A., Namieśnik, J., Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chem. 17 (2015), 3687–3705, 10.1039/C5GC00611B.
Wypych, A., Wypych, G., Databook of solvents. Databook Solv., 2024, 1–846, 10.1016/C2023-0-00629-X.
Zero Pollution Action Plan - European Commission n.d. https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en (accessed November 1, 2024).
Understanding REACH - ECHA n.d. https://echa.europa.eu/regulations/reach/understanding-reach (accessed November 1, 2024).
Vanden, Bilcke C, The stockholm convention on persistent organic pollutants. Am. J. Int. Law 95 (2001), 692–708, 10.2307/2668517.
Anastas, P.T., Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem 29 (1999), 167–175, 10.1080/10408349891199356.
Gałuszka, A., Migaszewski, Z., Namieśnik, J., The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC. Trend. Analy. Chem 50 (2013), 78–84, 10.1016/J.TRAC.2013.04.010.
López-Lorente, Á.I., Pena-Pereira, F., Pedersen-Bjergaard, S., Zuin, V.G., Ozkan, S.A., Psillakis, E., The ten principles of green sample preparation. TrAC Trend. Analy. Chem., 148, 2022, 116530, 10.1016/J.TRAC.2022.116530.
Vian, M., Breil, C., Vernes, L., Chaabani, E., Chemat, F., Green solvents for sample preparation in analytical chemistry. Curr. Opin. Green. Sustain. Chem 5 (2017), 44–48, 10.1016/J.COGSC.2017.03.010.
Pacheco-Fernández, I., Pino, V., Green solvents in analytical chemistry. Curr. Opin. Green. Sustain. Chem 18 (2019), 42–50, 10.1016/J.COGSC.2018.12.010.
Claux, O., Santerre, C., Abert-Vian, M., Touboul, D., Vallet, N., Chemat, F., Alternative and sustainable solvents for green analytical chemistry. Curr. Opin. Green. Sustain. Chem, 31, 2021, 100510, 10.1016/J.COGSC.2021.100510.
Kalisz, O., Tobiszewski, M., Nowaczyk, A., Bocian, S., Exploring the potential of green chemistry in reversed-phase liquid chromatography: a review of sustainable solvents. TrAC. Trend. Analy. Chem., 181, 2024, 118007, 10.1016/J.TRAC.2024.118007.
El Deeb, S, Enhancing sustainable analytical chemistry in liquid chromatography: guideline for transferring classical high-performance liquid chromatography and ultra-high-pressure liquid chromatography methods into greener, bluer, and whiter methods. Molecules, 29, 2024, 3205, 10.3390/MOLECULES29133205 Vol 29, Page 3205 2024.
Shishov, A., El-Deen, A.K., Godunov, P., Bulatov, A., Atypical deep eutectic solvents: new opportunities for chemical analysis. TrAC. Trend. Analy. Chem., 176, 2024, 117752, 10.1016/J.TRAC.2024.117752.
Winterton, N., The green solvent: a critical perspective. Clean. Technol. Environ. Policy 23 (2021), 2499–2522, 10.1007/S10098-021-02188-8 2021 23:9.
Ražić, S., Gadžurić, S., Trtić-Petrović, T., Ionic liquids in green analytical chemistry—Are they that good and green enough?. Anal. Bioanal. Chem., 2023, 1–7, 10.1007/S00216-023-05045-3/FIGURES/2.
de Jesus, S.S., Maciel Filho, R, Are ionic liquids eco-friendly?. Renew. Sustain. Energy. Rev., 157, 2022, 112039, 10.1016/J.RSER.2021.112039.
Rodríguez-Ramos, R., Santana-Mayor, Á., Socas-Rodríguez, B., Rodríguez-Delgado, M.Á, Recent applications of deep eutectic solvents in environmental analysis. Appl. Sci., 11, 2021, 4779, 10.3390/APP11114779 Vol 11, Page 4779 2021.
Wen, Q., Chen, J.X., Tang, Y.L., Wang, J., Yang, Z., Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132 (2015), 63–69, 10.1016/J.CHEMOSPHERE.2015.02.061.
Sharma, A., Lee, B.S., Toxicity test profile for deep eutectic solvents: a detailed review and future prospects. Chemosphere, 350, 2024, 141097, 10.1016/J.CHEMOSPHERE.2023.141097.
Yang, Z., Toxicity and biodegradability of deep eutectic solvents and natural deep eutectic solvents. Deep. Eutect. Solvent., 2019, 43–60, 10.1002/9783527818488.CH3.
Juneidi, I., Hayyan, M., Hashim, M.A., Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC. Adv. 5 (2015), 83636–83647, 10.1039/C5RA12425E.
Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F., Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41 (2012), 7108–7146, 10.1039/C2CS35178A.
Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., et al. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121 (2021), 1232–1285, 10.1021/ACS.CHEMREV.0C00385/ASSET/IMAGES/MEDIUM/CR0C00385_0009.GIF.
Santana-Mayor, Á., Rodríguez-Ramos, R., Herrera-Herrera, A.V., Socas-Rodríguez, B., Rodríguez-Delgado, M.Á, Deep eutectic solvents. The new generation of green solvents in analytical chemistry. TrAC. Trend. Analy. Chem., 134, 2021, 116108, 10.1016/J.TRAC.2020.116108.
Pena-Pereira, F., De La Calle, I, Solvents and eutectic Solvents. Encyclop. Analy. Sci., 2019, 184–190, 10.1016/B978-0-12-409547-2.14020-X.
Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P., Insights into the nature of eutectic and deep eutectic mixtures. J. Solution. Chem. 48 (2019), 962–982, 10.1007/S10953-018-0793-1/FIGURES/9.
Afonso, J., Mezzetta, A., Marrucho, I.M., Guazzelli, L., History repeats itself again: will the mistakes of the past for ILs be repeated for DESs? From being considered ionic liquids to becoming their alternative: the unbalanced turn of deep eutectic solvents. Green. Chem. 25 (2023), 59–105, 10.1039/D2GC03198A.
Andruch, V., Makoś-Chełstowska, P., Płotka-Wasylka, J., Remarks on use of the term “deep eutectic solvent” in analytical chemistry. Microchem. J., 179, 2022, 107498, 10.1016/J.MICROC.2022.107498.
Shishov, A., Makoś-Chełstowska, P., Bulatov, A., Andruch, V., Deep eutectic solvents or eutectic mixtures? Characterization of tetrabutylammonium bromide and nonanoic acid mixtures. J. Phys. Chem. B 126 (2022), 3889–3896, 10.1021/ACS.JPCB.2C00858/ASSET/IMAGES/LARGE/JP2C00858_0006.JPEG.
Kollau, L.J.B.M., Vis, M., Van Den Bruinhorst, A., Esteves, A.C.C., Tuinier, R., Quantification of the liquid window of deep eutectic solvents. Chem. Commun. 54 (2018), 13351–13354, 10.1039/C8CC05815F.
Smith, E.L., Abbott, A.P., Ryder, K.S., Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114 (2014), 11060–11082, 10.1021/CR300162P.
Liu, F., Xue, Z., Zhao, X., Mou, H., He, J., Mu, T., Catalytic deep eutectic solvents for highly efficient conversion of cellulose to gluconic acid with gluconic acid self-precipitation separation. Chem. Commun. 54 (2018), 6140–6143, 10.1039/C8CC03798A.
Liu, X., Zhai, Y., Xu, Z., Zhu, Y., Zhou, Y., Wang, Z., et al. The novel application of type II deep eutectic solvents (DES) for sludge dewatering. Sep. Purif. Technol., 306, 2023, 122714, 10.1016/J.SEPPUR.2022.122714.
Van Osch, D.J.G.P., Zubeir, L.F., Van Den Bruinhorst, A., Rocha, M.A.A., Kroon, M.C., Hydrophobic deep eutectic solvents as water-immiscible extractants. Green. Chem. 17 (2015), 4518–4521, 10.1039/C5GC01451D.
Tiecco, M., Cappellini, F., Nicoletti, F., Del Giacco, T., Germani, R., Di Profio, P., Role of the hydrogen bond donor component for a proper development of novel hydrophobic deep eutectic solvents. J. Mol. Liq. 281 (2019), 423–430, 10.1016/J.MOLLIQ.2019.02.107.
Shaibuna, M., Hiba, K., Theresa, L.V., Sreekumar, K., A new type IV DES: a competent green catalyst and solvent for the synthesis of α,β-unsaturated diketones and dicyano compounds by Knoevenagel condensation reaction. New. J. Chem. 44 (2020), 14723–14732, 10.1039/D0NJ02852E.
Shaibuna, M., Kuniyil, M.J.K., Sreekumar, K., Deep eutectic solvent assisted synthesis of dihydropyrimidinones/thiones via Biginelli reaction: theoretical investigations on their electronic and global reactivity descriptors. New. J. Chem. 45 (2021), 20765–20775, 10.1039/D1NJ03879F.
Shaibuna, M., Abbas, A., Kariyottu Kuniyil, M.J., Sreekumar, K, Sustainable synthesis of 1,8-dioxooctahydroxanthenes in deep eutectic solvents (DESs). New. J. Chem 45 (2021), 8335–8344, 10.1039/D1NJ00743B.
Abranches, D.O., Martins, M.A.R., Silva, L.P., Schaeffer, N., Pinho, S.P., Coutinho, J.A.P., Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chem. Commun. 55 (2019), 10253–10256, 10.1039/C9CC04846D.
Van Osch, D.J.G.P., Dietz, C.H.J.T., Van Spronsen, J., Kroon, M.C., Gallucci, F., Van Sint Annaland, M., et al. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS. Sustain. Chem. Eng 7 (2019), 2933–2942, 10.1021/ACSSUSCHEMENG.8B03520/ASSET/IMAGES/MEDIUM/SC-2018-03520A_M001.GIF.
Cao, J., Su, E., Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. J. Clean. Prod, 314, 2021, 127965, 10.1016/J.JCLEPRO.2021.127965.
Sharma, A., Lee, B.S., Toxicity test profile for deep eutectic solvents: a detailed review and future prospects. Chemosphere, 350, 2024, 141097, 10.1016/J.CHEMOSPHERE.2023.141097.
Kokosa J.M. Solvent microextraction. Comprehensive sampling and sample preparation: analytical techniques for scientists 2012:151–80. https://doi.org/10.1016/B978-0-12-381373-2.00151-4.
Assadi Y., Farajzadeh M.A., Bidari A. Dispersive liquid–Liquid microextraction. Comprehensive sampling and sample preparation: analytical techniques for scientists 2012:181–212. https://doi.org/10.1016/B978-0-12-381373-2.00051-X.
Juneidi, I., Hayyan, M., Hashim, M.A., Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC. Adv 5 (2015), 83636–83647, 10.1039/C5RA12425E.
Radošević, K., Cvjetko Bubalo, M., Gaurina Srček, V., Grgas, D., Landeka Dragičević, T., Redovniković, R.I, Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf 112 (2015), 46–53, 10.1016/J.ECOENV.2014.09.034.
Torregrosa-Crespo, J., Marset, X., Guillena, G., Ramón, D.J., María Martínez-Espinosa, R, New guidelines for testing “deep eutectic solvents” toxicity and their effects on the environment and living beings. Sci. Total. Environ., 704, 2020, 135382, 10.1016/J.SCITOTENV.2019.135382.
Sharma, A., Lee, B.S., Toxicity test profile for deep eutectic solvents: a detailed review and future prospects. Chemosphere, 350, 2024, 141097, 10.1016/J.CHEMOSPHERE.2023.141097.
Wen, Q., Chen, J.X., Tang, Y.L., Wang, J., Yang, Z., Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132 (2015), 63–69, 10.1016/J.CHEMOSPHERE.2015.02.061.
Marchel, M., Cieśliński, H., Boczkaj, G., Deep eutectic solvents microbial toxicity: current state of art and critical evaluation of testing methods. J. Hazard. Mater, 425, 2022, 127963, 10.1016/J.JHAZMAT.2021.127963.
Du, M., Li, T., Zhu, W., Shi, Y., Chen, X., Wang, C., et al. In-situ formation of hydrophobic deep eutectic solvent for the enrichment and quantitative determination of triclosan in personal care products and environmental water samples. Microchem. J., 181, 2022, 107788, 10.1016/J.MICROC.2022.107788.
Gabbana, J.V., de Oliveira, L.H., Paveglio, G.C., Trindade, M.A.G., Narrowing the interface between sample preparation and electrochemistry: trace-level determination of emerging pollutant in water samples after in situ microextraction and electroanalysis using a new cell configuration. Electrochim. Acta 275 (2018), 67–75, 10.1016/J.ELECTACTA.2018.04.134.
Li, K., Jin, Y., Jung, D., Park, K., Kim, H., Lee, J, In situ formation of thymol-based hydrophobic deep eutectic solvents: application to antibiotics analysis in surface water based on liquid-liquid microextraction followed by liquid chromatography. J. Chromatogr. A, 1614, 2020, 460730, 10.1016/J.CHROMA.2019.460730.
Ma, W., Row, K.H., pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water. Microchem. J, 160, 2021, 105642, 10.1016/J.MICROC.2020.105642.
Mohammad, R.E.A., Elbashir, A.A., Karim, J., Yahaya, N., Rahim, N.Y., Miskam, M., Development of deep eutectic solvents based ferrofluid for liquid phase microextraction of ofloxacin and sparfloxacin in water samples. Microchem. J, 181, 2022, 107806, 10.1016/J.MICROC.2022.107806.
Fattahi, N., Shamsipur, M., Nematifar, Z., Babajani, N., Moradi, M., Soltani, S., et al. Novel deep eutectic solvent-based liquid phase microextraction for the extraction of estrogenic compounds from environmental samples. RSC. Adv 12 (2022), 14467–14476, 10.1039/D2RA01754G.
El-Deen, A.K., Shimizu, K., A green air assisted-dispersive liquid-liquid microextraction based on solidification of a novel low viscous ternary deep eutectic solvent for the enrichment of endocrine disrupting compounds from water. J. Chromatogr. A, 1629, 2020, 461498, 10.1016/J.CHROMA.2020.461498.
Hložek, T., Bosáková, T., Bosáková, Z., Tůma, P., Hydrophobic eutectic solvents for endocrine disruptors purification from water: natural and synthetic estrogens study. Sep. Purif. Technol, 303, 2022, 122310, 10.1016/J.SEPPUR.2022.122310.
Davoodi, R., Nodehi, R.N., Rastkari, N., Zinatizadeh, A.A., Mahvi, A.H., Fattahi, N., Solid-phase extraction followed by deep eutectic solvent based dispersive liquid–liquid microextraction and GC-MS detection of the estrogenic compounds in wastewater samples. New. J. Chem 44 (2020), 9844–9851, 10.1039/D0NJ00911C.
Khodayari, P., Ebrahimzadeh, H., A green QuEChERS syringe filter based micro-solid phase extraction using hydrophobic natural deep eutectic solvent as immobilized sorbent for simultaneous analysis of five anti-diabetic drugs by HPLC-UV. Anal. Chim. Acta, 1279, 2023, 341765, 10.1016/J.ACA.2023.341765.
Ge, D., Zhang, Y., Dai, Y., Yang, S., Air-assisted dispersive liquid–liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples. J. Sep. Sci 41 (2018), 1635–1643, 10.1002/JSSC.201701282.
Zelinski, D.W., Farias, F.O., Oliveira, G., Igarashi-Mafra, L., Mafra, M.R., COSMO-SAC model and vortex assisted liquid-liquid microextraction to assess the hydrophobic deep eutectic solvents as an alternative path for parabens removal from aqueous media. Fluid. Phase. Equilib, 560, 2022, 10.1016/j.fluid.2022.113503.
Prabha Padinhattath, S., Vinod Kumar Panneer, S., Subramanian, V., Gardas, R.L, Effective removal of personal care product residues from aqueous media using hydrophobic deep eutectic solvents: experimental and computational approach. Microchem. J, 197, 2024, 109891, 10.1016/J.MICROC.2024.109891.
Cao, L., Li, Y., Synthesis and characterization of pH-responsive deep eutectic solvent followed by HPLC for trace determination of bisphenol A in water samples. J. Sep. Sci, 47, 2024, 2300776, 10.1002/JSSC.202300776.
Santana-Mayor, Á., Socas-Rodríguez, B., Rodríguez-Ramos, R., Herrera-Herrera, A.V., Rodríguez-Delgado, M.Á., Quality assessment of environmental water by a simple and fast non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure combined with liquid chromatography tandem mass spectrometry for the determination of plastic migrants. Anal. Bioanal. Chem 413 (2021), 1967–1981, 10.1007/S00216-021-03166-1.
Conde-Díaz, A., Santana-Mayor, Á., Herrera-Herrera, A.V., Socas-Rodríguez, B., Rodríguez-Delgado, M.Á, Assessment of endocrine disruptor pollutants and their metabolites in environmental water samples using a sustainable natural deep eutectic solvent-based analytical methodology. Chemosphere, 338, 2023, 139480, 10.1016/J.CHEMOSPHERE.2023.139480.
Niu, R., Qin, H., Tao, Y., Li, L., Qiao, L., In situ formation of deep eutectic solvents based dispersive liquid–liquid microextraction for the enrichment of trace phthalate esters in aqueous samples. Microchem. J, 189, 2023, 108537, 10.1016/J.MICROC.2023.108537.
Jafari, Z., Ghani, M., Bakhsh Raoof, J, ZIF-8-90 @ graphene oxide reinforced porous hollow fiber coupled with deep eutectic solvent for hollow fiber solid-phase microextraction of selected phthalate esters followed by quantification through high-performance liquid chromatography-ultraviolet detection. Microchem. J, 194, 2023, 109269, 10.1016/J.MICROC.2023.109269.
Panhwar, A.H., Tuzen, M., Kazi, T.G., Deep eutectic solvent based advance microextraction method for determination of aluminum in water and food samples: multivariate study. Talanta 178 (2018), 588–593, 10.1016/j.talanta.2017.09.079.
Khezeli, T., Daneshfar, A., Sahraei, R., Emulsification liquid–liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A 1425 (2015), 25–33, 10.1016/J.CHROMA.2015.11.007.
Makoś, P., Przyjazny, A., Boczkaj, G., Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 1570 (2018), 28–37, 10.1016/J.CHROMA.2018.07.070.
Yousefi, S.M., Shemirani, F., Ghorbanian, S.A., Hydrophobic deep eutectic solvents in developing microextraction methods based on solidification of floating drop: application to the trace HPLC/FLD determination of PAHs. Chromatographia 81 (2018), 1201–1211, 10.1007/S10337-018-3548-7.
Mehravar, A., Feizbakhsh, A., Sarafi, A.H.M., Konoz, E., Faraji, H., Deep eutectic solvent-based headspace single-drop microextraction of polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A, 1632, 2020, 461618, 10.1016/J.CHROMA.2020.461618.
An, Y., Ma, W., Row, K.H., Preconcentration and determination of chlorophenols in wastewater with dispersive liquid–Liquid microextraction using hydrophobic deep eutectic solvents. Anal. Lett 53 (2020), 262–272, 10.1080/00032719.2019.1646754.
Hu, X., Zhang, L., Xia, H., Peng, M., Zhou, Y., Xu, Z., et al. Dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the determination of phenolic compounds in environmental water samples. J. Sep. Sci 44 (2021), 1510–1520, 10.1002/jssc.202001055.
Fortunato, L., Al Fuhaid, L., Murgolo, S., De Ceglie, C., Mascolo, G., Falivene, L., et al. Removal of polyfluoroalkyl substances (PFAS) from water using hydrophobic natural deep eutectic solvents (NADES): a proof of concept study. J. Water. Process. Eng, 56, 2023, 104401, 10.1016/J.JWPE.2023.104401.
Shahbodaghi, M., Faraji, H., Shahbaazi, H., Shabani, M., Sustainable and green microextraction of organophosphorus flame retardants by a novel phosphonium-based deep eutectic solvent. J. Sep. Sci 43 (2020), 452–461, 10.1002/JSSC.201900504.
Shahbodaghi, M., Faraji, H., Shahbaazi, H., Shabani, M., Magnetic deep eutectic solvent-based microextraction for determination of organophosphorus flame retardants in aqueous samples: one step closer to green chemistry. Microchem. J, 183, 2022, 10.1016/j.microc.2022.108120.
Zarei, A.R., Nedaei, M., Ghorbanian, S.A., Ferrofluid of magnetic clay and menthol based deep eutectic solvent: application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples. J. Chromatogr. A 1553 (2018), 32–42, 10.1016/J.CHROMA.2018.04.023.
Morelli, D.C., Bernardi, G., Morés, L., Pierri, M.E., Carasek, E., A green - high throughput –extraction method based on hydrophobic natural deep eutectic solvent for the determination of emerging contaminants in water by high performance liquid chromatography – diode array detection. J. Chromatogr. A, 1626, 2020, 461377, 10.1016/J.CHROMA.2020.461377.
Ortega-Zamora, C., Jiménez-Skrzypek, G., González-Sálamo, J., Mazzapioda, L., Navarra, M.A., Gentili, A., et al. Extraction of emerging contaminants from environmental waters and urine by dispersive liquid-liquid microextraction with solidification of the floating organic droplet using fenchol:acetic acid deep eutectic mixtures. ACS. Sustain. Chem. Eng 10 (2022), 15714–15725, 10.1021/ACSSUSCHEMENG.2C04044/ASSET/IMAGES/LARGE/SC2C04044_0005.JPEG.
Souza H de, O., Costa R dos, S., Quadra, G.R., Fernandez, MA dos S, Pharmaceutical pollution and sustainable development goals: going the right way?. Sustain. Chem. Pharm, 21, 2021, 100428, 10.1016/J.SCP.2021.100428.
Ortúzar, M., Esterhuizen, M., Olicón-Hernández, D.R., González-López, J., Aranda, E., Pharmaceutical pollution in aquatic environments: a concise review of environmental impacts and bioremediation systems. Front. Microbiol, 13, 2022, 869332, 10.3389/FMICB.2022.869332/BIBTEX.
Tijani, J.O., Fatoba, O.O., Babajide, O.O., Petrik, L.F., Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ. Chem. Lett 14 (2015), 27–49, 10.1007/S10311-015-0537-Z 2015 14:1.
Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., Buelna, G., Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol 224 (2017), 1–12, 10.1016/J.BIORTECH.2016.11.042.
Prestinaci, F., Pezzotti, P., Pantosti, A., Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109 (2015), 309–318, 10.1179/2047773215Y.0000000030.
Janecko, N., Pokludova, L., Blahova, J., Svobodova, Z., Literak, I., Implications of fluoroquinolone contamination for the aquatic environment—a review. Environ. Toxicol. Chem 35 (2016), 2647–2656, 10.1002/ETC.3552.
Yang, C., Wu, T., A comprehensive review on quinolone contamination in environments: current research progress. Environ. Sci. Pollution. Res 30 (2023), 48778–48792, 10.1007/S11356-023-26263-3 2023 30:17.
Implementing decision, 2022/1307 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022D1307 (accessed December 6, 2024).
Implementing decision, 2020/1161 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020D1161 (accessed December 6, 2024).
Adolfsson-Erici, M., Pettersson, M., Parkkonen, J., Sturve, J., Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46 (2002), 1485–1489, 10.1016/S0045-6535(01)00255-7.
Dar, O.I., Aslam, R., Pan, D., Sharma, S., Andotra, M., Kaur, A., et al. Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: a review. Environ. Technol. Innov, 25, 2022, 102122, 10.1016/J.ETI.2021.102122.
Weatherly, L.M., Gosse, J.A., Triclosan exposure, transformation, and Human health effects. J. Toxicol. Environ. Health. B. Crit. Rev, 20, 2017, 447, 10.1080/10937404.2017.1399306.
Safety of Triclocarban and Triclosan as substances with potential endocrine disrupting properties in cosmetic products - European Commission n.d. https://health.ec.europa.eu/publications/safety-triclocarban-and-triclosan-substances-potential-endocrine-disrupting-properties-cosmetic_en, files (accessed December 6, 2024).
Regulation - EU, 2024/996 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32024R0996 (accessed December 6, 2024).
Ciślak, M., Kruszelnicka, I., Zembrzuska, J., Ginter-Kramarczyk, D., Estrogen pollution of the European aquatic environment: a critical review. Water. Res, 229, 2023, 119413, 10.1016/J.WATRES.2022.119413.
Loos, R., Analytical Methods For Possible WFD 1st Watch List substances. CoreAcUkR LoosJRC Science and Policy Reports. 2014, European Commission, 10.2788/723416 2015•coreAcUk.
Markiewicz, M., Jungnickel, C., Stolte, S., Białk-Bielińska, A., Kumirska, J., Mrozik, W., Ultimate biodegradability and ecotoxicity of orally administered antidiabetic drugs. J. Hazard. Mater 333 (2017), 154–161, 10.1016/J.JHAZMAT.2017.03.030.
Vieira, Y., Ribeiro, T.H., Leichtweis, J., Dotto, G.L., Foletto, E.L., Georgin, J., et al. A critical review of the current environmental risks posed by the antidiabetic Metformin and the status, advances, and trends in adsorption technologies for its remediation. J. Water. Process. Eng, 54, 2023, 103943, 10.1016/J.JWPE.2023.103943.
Lorigo, M., Quintaneiro, C., Breitenfeld, L., Cairrao, E., Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. J. Toxicol. Environ. Health. B. Crit. Rev 27 (2024), 55–72, 10.1080/10937404.2023.2296897.
Fenni, F., Sunyer-Caldú, A., Ben Mansour, H., Diaz-Cruz, M.S, Contaminants of emerging concern in marine areas: first evidence of UV filters and paraben preservatives in seawater and sediment on the eastern coast of Tunisia. Environ. Pollution, 309, 2022, 119749, 10.1016/J.ENVPOL.2022.119749.
EUR-Lex, 02009R1223-20240424 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/TXT/?, uri=CELEX%3A02009R1223-20240424 (accessed December 8, 2024).
Wei, F., Mortimer, M., Cheng, H., Sang, N., Guo, L.H., Parabens as chemicals of emerging concern in the environment and humans: a review. Sci. Total. Environ, 778, 2021, 146150, 10.1016/J.SCITOTENV.2021.146150.
Wang, Y., Zhu, H., Kannan, K., A review of biomonitoring of phthalate exposures. Toxics, 7, 2019, 21, 10.3390/TOXICS7020021 Vol 7, Page 21 2019.
Staples, C.A., Peterson, D.R., Parkerton, T.F., Adams, W.J., The environmental fate of phthalate esters: a literature review. Chemosphere 35 (1997), 667–749, 10.1016/S0045-6535(97)00195-1.
Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., Harris, L.R, A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36 (1998), 2149–2173, 10.1016/S0045-6535(97)10133-3.
Warner, G.R., Flaws, J.A., Bisphenol A and phthalates: how environmental chemicals are reshaping toxicology. Toxicol. Sci 166 (2018), 246–249, 10.1093/TOXSCI/KFY232.
Ventrice, P., Ventrice, D., Russo, E., De Sarro, G, Phthalates: european regulation, chemistry, pharmacokinetic and related toxicity. Environ. Toxicol. Pharmacol 36 (2013), 88–96, 10.1016/J.ETAP.2013.03.014.
Dekant, W., Völkel, W., Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol. Appl. Pharmacol 228 (2008), 114–134, 10.1016/J.TAAP.2007.12.008.
Directive, 2020/2184 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed December 8, 2024).
Contaminant Candidate List 5 - CCL 5 US EPA n.d. https://www.epa.gov/ccl/contaminant-candidate-list-5-ccl-5 (accessed December 8, 2024).
Florindo, C., Monteiro, N.V., Ribeiro, B.D., Branco, L.C., Marrucho, I.M., Hydrophobic deep eutectic solvents for purification of water contaminated with bisphenol-A. J. Mol. Liq, 297, 2020, 111841, 10.1016/J.MOLLIQ.2019.111841.
An, Y., Row, K.H., Evaluation of menthol-based hydrophobic deep eutectic solvents for the extraction of bisphenol A from environment water. Anal. Lett 54 (2021), 1533–1545, 10.1080/00032719.2020.1811716.
Cao, X., Wang, L., Zhang, Y., Li, Y., Zhu, C., Zheng, X., et al. Occurrence of organic pollutants in plastics on beach: stranded foams can be sources of pollutants in islands. Sci. Total. Environ, 707, 2020, 136119, 10.1016/J.SCITOTENV.2019.136119.
Li, X., Wang, Q., Jiang, N., Lv, H., Liang, C., Yang, H., et al. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: a review. Environ. Res, 220, 2023, 115196, 10.1016/J.ENVRES.2022.115196.
Vannucchi, F., Francini, A., Pierattini, E.C., Raffaelli, A., Sebastiani, L., Populus alba dioctyl phthalate uptake from contaminated water. Environ. Sci. Pollution. Res 26 (2019), 25564–25572, 10.1007/S11356-019-05829-0.
Anne O., Paulauskiene T. The assessment of the sewage and sludge contamination by phthalate acid esters (PAEs) in Eastern Europe Countries. Sustainability 2021, Vol 13, Page 529 2021;13:529. https://doi.org/10.3390/SU13020529.
Zhang, Y., Lyu, L., Tao, Y., Ju, H., Chen, J., Health risks of phthalates: a review of immunotoxicity. Environ. Pollution, 313, 2022, 120173, 10.1016/J.ENVPOL.2022.120173.
Hamid, N., Junaid, M., Manzoor, R., Jia, P.P., Pei, D.S., Prioritizing phthalate esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. J. Hazard. Mater, 398, 2020, 122851, 10.1016/J.JHAZMAT.2020.122851.
Regulation, 1907/2006 - EN - REACH - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006R1907 (accessed December 9, 2024).
Risk Management for Phthalates US EPA n.d. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-phthalates (accessed December 9, 2024).
ECHA's completed activities on restriction - ECHA n.d. https://echa.europa.eu/completed-activities-on-restriction (accessed December 9, 2024).
WHO. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum 2017.
Gałuszka, A., Migaszewski, Z.M., Konieczka, P., Namieśnik, J., Analytical eco-scale for assessing the greenness of analytical procedures. TrAC. Trend. Analy. Chem 37 (2012), 61–72, 10.1016/J.TRAC.2012.03.013.
Alloway, Brian J., Sources of heavy metals and metalloids in soils. editor Alloway, BJ, (eds.) Heavy Metals in Soils Trace Metals and Metalloids in Soils and Their Bioavailability, 2013, Springer, 11–50, 10.1007/978-94-007-4470-7 Third Edition.
Hama Aziz, K.H., Mustafa, F.S., Omer, K.M., Hama, S., Hamarawf, R.F., Rahman, K.O, Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC. Adv, 13, 2023, 17595, 10.1039/D3RA00723E.
Kumar, V., Parihar, R.D., Sharma, A., Bakshi, P., Singh Sidhu, G.P., Bali, A.S., et al. Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 2019, 124364, 10.1016/J.CHEMOSPHERE.2019.124364.
Directive, 2000/60 - EN - Water Framework Directive - EUR-Lex n.d. https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed December 9, 2024).
Summary of the Clean Water Act, US EPA n.d. https://www.epa.gov/laws-regulations/summary-clean-water-act (accessed December 9, 2024).
Method 200. 7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry US EPA n.d. https://www.epa.gov/esam/method-2007-determination-metals-and-trace-elements-water-and-wastes-inductively-coupled (accessed December 9, 2024).
EPA Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry US EPA n.d. https://www.epa.gov/esam/epa-method-2008-determination-trace-elements-waters-and-wastes-inductively-coupled-plasma-mass (accessed December 9, 2024).
U.S. E.P.A. Method 200.9, Revision 2.2: Determination of Trace Elements By Stabilized Temperature Graphic Furnace Atomic Absorption. Cincinnati, OH: 1994.
Van Osch, D.J.G.P., Parmentier, D., Dietz, C.H.J.T., Van Den Bruinhorst, A., Tuinier, R., Kroon, M.C., Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem. Commun 52 (2016), 11987–11990, 10.1039/C6CC06105B.
Rashid, S.N., Hizaddin, H.F., Hayyan, A., Hasikin, K., Abdul Razak, S., Mokhtar, M.I., et al. Deep eutectic solvents for the removal of lead contaminants in mangrove soil. J. Environ. Chem. Eng, 10, 2022, 107264, 10.1016/J.JECE.2022.107264.
Panhwar, A.H., Tuzen, M., Kazi, T.G., Deep eutectic solvent based advance microextraction method for determination of aluminum in water and food samples: multivariate study. Talanta 178 (2018), 588–593, 10.1016/J.TALANTA.2017.09.079.
EUR-Lex, 02000L0060-20141120 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/TXT/?, uri=CELEX%3A02000L0060-20141120 (accessed April 24, 2024).
National pollutant discharge Elimination System (NPDES) US EPA n.d. https://www.epa.gov/npdes (accessed April 25, 2024).
Abdel-Shafy, H.I., Mansour, M.S.M., A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Petrol 25 (2016), 107–123, 10.1016/J.EJPE.2015.03.011.
Babich, H., Davis, D.L., Phenol: a review of environmental and health risks. Regulat. Toxicol. Pharmacol 1 (1981), 90–109, 10.1016/0273-2300(81)90071-4.
Harrison, M.A.J., Barra, S., Borghesi, D., Vione, D., Arsene, C., Iulian Olariu, R, Nitrated phenols in the atmosphere: a review. Atmos. Environ 39 (2005), 231–248, 10.1016/J.ATMOSENV.2004.09.044.
Tobiszewski, M., Tsakovski, S., Simeonov, V., Namieśnik, J., Multivariate statistical comparison of analytical procedures for benzene and phenol determination with respect to their environmental impact. Talanta 130 (2014), 449–455, 10.1016/J.TALANTA.2014.07.039.
Wenzl, T., Simon, R., Anklam, E., Kleiner, J., Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC. Trend. Analy. Chem 25 (2006), 716–725, 10.1016/J.TRAC.2006.05.010.
Directive, 2013/39 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32013L0039 (accessed December 9, 2024).
Substance Information, ECHA n.d. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.305.369 (accessed December 11, 2024).
Substance Information, ECHA n.d. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.305.370 (accessed December 11, 2024).
environmental-quality-standards, ECHA n.d. https://echa.europa.eu/de/environmental-quality-standards/-/legislationlist/details/EU-EQS_WATER-ANX_I-100.001.617-VSK-G076N7 (accessed December 11, 2024).
Ladeia Ramos, R., Rezende Moreira, V., Santos Amaral, M.C, Phenolic compounds in water: review of occurrence, risk, and retention by membrane technology. J. Environ. Manage, 351, 2024, 10.1016/j.jenvman.2023.119772.
Wazeer, I., Hizaddin, H.F., Wen, N.X., El Blidi, L., Hashim, M.A., Hadj-Kali, M.K, Extraction of phenol as pollutant from aqueous effluents using hydrophobic deep eutectic solvents. Water. (Switzerland), 15, 2023, 10.3390/w15244289.
Maletta, A., Gutiérrez, A., Jian Tan, P., Springstead, J., Aparicio, S., Atilhan, M, Separation of phenolic compounds from water by using monoterpenoid and fatty acid based hydrophobic deep eutectic solvents. J. Mol. Liq, 381, 2023, 10.1016/j.molliq.2023.121806.
Almas, M., Sada Khan, A., Ullah, S., Nasrullah, A., Khan, P., Gilani, M.A., et al. Fast and efficient extraction of phenol from aqueous phase using deep eutectic solvents: experimental and density functional theory investigation for interactions studies. J. Mol. Liq, 404, 2024, 10.1016/j.molliq.2024.124942.
Cheng, H., Huang, Y., Lv, H., Li, L., Meng, Q., Yuan, M., et al. Insights into the liquid extraction mechanism of actual high-strength phenolic wastewater by hydrophobic deep eutectic solvents. J. Mol. Liq, 368, 2022, 10.1016/j.molliq.2022.120609.
Rodríguez-Llorente, D., Cañada-Barcala, A., Muñoz, C., Pascual-Muñoz, G., Navarro, P., Santiago, R., et al. Separation of phenols from aqueous streams using terpenoids and hydrophobic eutectic solvents. Sep. Purif. Technol, 251, 2020, 10.1016/j.seppur.2020.117379.
Adeyemi, I., Sulaiman, R., Almazroui, M., Al-Hammadi, A., AlNashef, I.M., Removal of chlorophenols from aqueous media with hydrophobic deep eutectic solvents: experimental study and COSMO RS evaluation. J. Mol. Liq, 311, 2020, 10.1016/j.molliq.2020.113180.
Sas, O.G., Villar, L., Domínguez, Á., González, B., Macedo, E.A., Hydrophobic deep eutectic solvents as extraction agents of nitrophenolic pollutants from aqueous systems. Environ. Technol. Innov, 25, 2022, 10.1016/j.eti.2021.102170.
Sas, O.G., Castro, M., Domínguez, Á., González, B., Removing phenolic pollutants using deep eutectic solvents. Sep. Purif. Technol, 227, 2019, 10.1016/j.seppur.2019.115703.
Taheran, M., Naghdi, M., Brar, S.K., Verma, M., Surampalli, R.Y., Emerging contaminants: here today, there tomorrow!. Environ. Nanotechnol. Monit. Manag 10 (2018), 122–126, 10.1016/J.ENMM.2018.05.010.
Baluyot, J.C., Reyes, E.M., Velarde, M.C., Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia's freshwater resources. Environ. Res, 197, 2021, 111122, 10.1016/J.ENVRES.2021.111122.
Shen, Y., Wang, L., Ding, Y., Liu, S., Li, Y., Zhou, Z., et al. Trends in the analysis and exploration of per- and polyfluoroalkyl substances (PFAS) in environmental matrices: a review. Crit. Rev. Anal. Chem, 2023, 10.1080/10408347.2023.2231535.
Cordner, A., Brown, P., Cousins, I.T., Scheringer, M., Martinon, L., Dagorn, G., et al. PFAS contamination in Europe: generating knowledge and mapping known and likely contamination with “expert-reviewed” journalism. Environ. Sci. Technol 58 (2023), 6616–6627, 10.1021/ACS.EST.3C09746/ASSET/IMAGES/LARGE/ES3C09746_0001.JPEG.
Gutiérrez, A., Maletta, A., Aparicio, S., Atilhan, M., A theoretical study of low concentration per- and polyfluoroalkyl substances (PFAS) remediation from wastewater by novel hydrophobic deep eutectic solvents (HDES) extraction agents. J. Mol. Liq, 383, 2023, 122101, 10.1016/J.MOLLIQ.2023.122101.
Fronchetti Guidugli, L., Reza, T, Fundamental insight on how carbon chain length affects per-and polyfluoroalkyl substances adsorption onto hydrophobic deep eutectic solvents. J. Mol. Liq, 398, 2024, 124238, 10.1016/J.MOLLIQ.2024.124238.
Yang, J., Zhao, Y., Li, M., Du, M., Li, X., Li, Y., A review of a class of emerging contaminants: the classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs). Int. J. Mol. Sci, 20, 2019, 2874, 10.3390/IJMS20122874 Vol 20, Page 2874 2019.
van der Veen, I., de Boer, J., Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88 (2012), 1119–1153, 10.1016/J.CHEMOSPHERE.2012.03.067.
Xiao, H., Shen, L., Su, Y., Barresi, E., Dejong, M., Hung, H., et al. Atmospheric concentrations of halogenated flame retardants at two remote locations: the Canadian High Arctic and the Tibetan Plateau. Environ. Pollution 161 (2012), 154–161, 10.1016/J.ENVPOL.2011.09.041.
Regnery, J., Püttmann, W., Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany. Water. Res 44 (2010), 4097–4104, 10.1016/J.WATRES.2010.05.024.