Doctoral thesis (Dissertations and theses)
Embedded Detection of Gunshots by AI in Real-time (EDGAR)
Morsa, Nathan
2025
 

Files


Full Text
morsa_phd_thesis_2025_09_05.pdf
Author postprint (32.04 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Electronic shot counters; Gunshot detection; Ammunition discrimination; Preventive maintenance; Operational availability; Weakly supervised learning; Time Series Classification; Deep Learning; Resource-Constrained Devices; Label Proportions; Weak Labels
Abstract :
[en] Proper management and maintenance of infantry firearms are critical to operational readiness, safety, and cost control within modern military contexts. Weapon fleets degrade differently depending on their usage. Traditional methods of tracking weapon usage through manual shot counting are inaccurate and inefficient. Electronic shot counters enable preventive and predictive maintenance by providing armourers with precise, quantitative measures of weapon usage. Traditional electronic shot-counting solutions require expert knowledge and extensive study for each firearm. In response to market demands for increased customisation and shorter lead times, recent machine-learning-based solutions have been proposed. However, these solutions are limited by the difficulty of acquiring sufficiently large, fully-labelled datasets, restricting their generalisation capabilities. To address this limitation, we propose EDGAR (Embedded Detection of Gunshots by AI in Real-time), a novel technique capable of working directly with data labelled only by the total number of events in a time series. This approach significantly reduces labelling efforts, enabling the creation and use of datasets several orders of magnitude larger than those typically available. Furthermore, we show how the technique can be extended to effectively support discrimination between live and blank ammunition, as well as detection of suppressor usage, with minimal additional computational overhead. We demonstrate that these classification tasks can be executed in under 100 ms on highly constrained embedded microcontrollers, thus enabling real-time shot detection. Extensive experiments conducted across a range of firearms, including FN Minimi, FN MAG, FN M2HB-QCB, and M134 Minigun, demonstrate that EDGAR significantly outperforms unsupervised algorithms and achieves comparable or superior performance to human-generated state-of-the-art algorithms, particularly for discrimination tasks. Practical field deployments validate the robustness and real-time capabilities of the proposed method. Finally, leveraging the large datasets made accessible through our approach, we empirically investigate the impact of dataset size on model performance. We identify critical thresholds required for effective model generalisation and provide practical guidelines for efficient dataset acquisition and model training. These results enable a new generation of electronic shot counters and targeted maintenance strategies, thereby reducing maintenance costs, preventing incidents, and increasing the operational availability of weapon fleets.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Computer science
Author, co-author :
Morsa, Nathan  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Language :
English
Title :
Embedded Detection of Gunshots by AI in Real-time (EDGAR)
Defense date :
September 2025
Number of pages :
165 + 73
Institution :
ULiège - University of Liège [Applied Sciences], Liège, Belgium
Degree :
Doctor of Philosophy in Engineering Science
Promotor :
Libotte, Hugues ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Electronique et microsystèmes ; Altéris Technologies
Wehenkel, Louis  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
President :
Sacré, Pierre  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Robotique intelligente
Jury member :
Neyt, Xavier;  ERM - Ecole Royale Militaire
Papy, Alexandre;  ERM - Ecole Royale Militaire
Redouté, Jean-Michel  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Geurts, Pierre  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Algorithmique des systèmes en interaction avec le monde physique
Pisane, Jonathan ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés ; Thales > Secure Communication and Information Systems
Available on ORBi :
since 07 July 2025

Statistics


Number of views
254 (40 by ULiège)
Number of downloads
222 (20 by ULiège)

Bibliography


Similar publications



Contact ORBi