Eprint already available on another site (E-prints, working papers and research blog)
Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
Andry, Gérôme; Rozet, François; Lewin, Sacha et al.
2025
 

Files


Full Text
2504.18720v1.pdf
Author preprint (19.55 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computer Science - Learning; Physics - Atmospheric and Oceanic Physics; Diffusion models; Posterior inference; data assimilation
Abstract :
[en] Deep learning has transformed weather forecasting by improving both its accuracy and computational efficiency. However, before any forecast can begin, weather centers must identify the current atmospheric state from vast amounts of observational data. To address this challenging problem, we introduce Appa, a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals. Powered by a 1.5B-parameter spatio-temporal latent diffusion model trained on ERA5 reanalysis data, Appa can be conditioned on any type of observations to infer the posterior distribution of plausible state trajectories, without retraining. Our unified probabilistic framework flexibly tackles multiple inference tasks -- reanalysis, filtering, and forecasting -- using the same model, eliminating the need for task-specific architectures or training procedures. Experiments demonstrate physical consistency on a global scale and good reconstructions from observations, while showing competitive forecasting skills. Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
Disciplines :
Computer science
Author, co-author :
Andry, Gérôme  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Rozet, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Lewin, Sacha  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Rochman, Omer
Mangeleer, Victor  ;  Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Pirlet, Matthias ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Faulx, Elise  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Grégoire, Marilaure  ;  Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Language :
English
Title :
Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
Publication date :
25 April 2025
Source :
Available on ORBi :
since 06 July 2025

Statistics


Number of views
52 (6 by ULiège)
Number of downloads
49 (3 by ULiège)

Bibliography


Similar publications



Contact ORBi