[en] Introduction. Alterations in ocular surface microbiota (OSM) have been noted in both dry eye disease (DED) and glaucoma. However, the combined effects of these conditions on OSM have not been explored. Hypothesis. We hypothesized that patients with both glaucoma and dry eye would exhibit distinct changes in OSM composition and diversity compared to those with only glaucoma, only dry eye or healthy individuals. Aim. We employed amplicon sequencing to investigate OSM profiles in patients with glaucoma and/or dry eye disease. Methods. Swab samples from the conjunctiva of both eyes were collected from 28 glaucomatous patients [13 without dry eye syndrome (G-only) and 15 with dry eye syndrome (G-DED)], 13 DED patients without glaucoma (DED-only) and 31 age-matched healthy controls (HCs). After V3-V4 16S rRNA sequencing, MOTHUR tools and R language were used to elucidate and compare OSM composition and diversity between groups. Results. Our data revealed very diverse bacterial communities with 28 phyla and 785 genera. All the groups shared the three most abundant phyla, Actinobacteria (67.47%), Firmicutes (17.14%) and Proteobacteria (13.73%). Corynebacterium (54.75%), Staphylococcus (10.71%), Cutibacterium (8.77%) and Streptococcus (3.20%) were the most abundant genera. Only the G-DED group showed higher alpha diversity than the HC group (P<0.05). However, significant differences in beta diversity were observed between all three patient groups and the HC group. The Differential Expression for Sequencing 2 (DESeq2) analysis unveiled an increased presence of opportunistic bacteria across all pathological groups, with the G-DED group demonstrating the most pronounced alterations. Conclusions. Our findings confirm the predominance of Gram-positive bacteria in normal OSM and the rise of opportunistic Gram-negative bacteria in glaucoma and dry eye disease. This is the first study to characterize OSM in glaucoma patients with DED.
Research Center/Unit :
FARAH. Santé publique vétérinaire - ULiège
Disciplines :
Ophthalmology
Author, co-author :
Kamdougha, Houyem ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) ; Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax University, Sfax, Tunisia
Taminiau, Bernard ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Fall, Papa; Laboratory of Microbiology, Department of Food Sciences, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
Amor, Saloua; Department of Ophthalmology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
Trigui, Amira; Department of Ophthalmology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Mnif, Basma; Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax University, Sfax, Tunisia ; Research Laboratory Microorganisms and Human Disease "MPH LR03SP03", Sfax University, Sfax, Tunisia
Language :
English
Title :
Alterations of ocular surface microbiome in glaucoma and its association with dry eye
Tham YC, Li X, Wong TY, Quigley HA, Aung T, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121:2081–2090.
Yıldırım N, Bozkurt B, Yüksel N, Ateş H, Altan-Yaycıoğlu R, et al. Prevalence of ocular surface disease and associated risk factors in glaucoma patients: a survey study of ophthalmologists. Turk J Ophthalmol 2022;52:302–308.
Spörri L, Uldry A-C, Kreuzer M, Herzog EL, Zinkernagel MS, et al. Exploring the ocular surface microbiome and tear proteome in glaucoma. Int J Mol Sci 2024;25:6257.
Huang L, Hong Y, Fu X, Tan H, Chen Y, et al. The role of the microbiota in glaucoma. Mol Aspects Med 2023;94:101221.
Chang C-CJ, Somohano K, Zemsky C, Uhlemann A-C, Liebmann J, et al. Topical glaucoma therapy Is associated with alterations of the ocular surface microbiome. Invest Ophthalmol Vis Sci 2022;63:32.
Honda R, Toshida H, Suto C, Fujimaki T, Kimura T, et al. Effect of long-term treatment with eyedrops for glaucoma on conjunctival bacterial flora. Infect Drug Resist 2011;4:191–196.
Monjane MJ, Makupa W. Prevalence and associated factors of dry eye among glaucoma patients at KCMC eye department. OJOph 2020;10:154–163.
Leila K, Gatfaoui F, Mahjoub A, Yakoubi S, Krifa F, et al. Impact du traitement antiglaucomateux et de la pathologie de la surface oculaire sur la qualité de vie des patients glaucomateux dans la région de Sousse (Tunisie). J Fr Ophtalmol 2019;42:464–470.
Nijm LM, De Benito-Llopis L, Rossi GC, Vajaranant TS, Coroneo MT. Understanding the dual dilemma of dry eye and glaucoma: an international review. Asia Pac J Ophthalmol 2020;9:481–490.
Costa VP, Marcon IM, Galvão Filho RP, Malta RFS. The prevalence of ocular surface complaints in Brazilian patients with glaucoma or ocular hypertension. Arq Bras Oftalmol 2013;76:221–225.
Erb C, Gast U, Schremmer D. German register for glaucoma patients with dry eye. I. Basic outcome with respect to dry eye. Graefes Arch Clin Exp Ophthalmol 2008;246:1593–1601.
Rossi GCM, Pasinetti GM, Scudeller L, Bianchi PE. Ocular surface disease and glaucoma: how to evaluate impact on quality of life. J Ocul Pharmacol Ther 2013;29:390–394.
Ruangvaravate N, Prabhasawat P, Vachirasakchai V, Tantimala R. Highprevalenceofocularsurfacediseaseamongglaucomapatients in Thailand. J Ocul Pharmacol Ther 2018;34:387–394.
Stalmans I, Lemij H, Clarke J, Baudouin C, GOAL study group. Signs and symptoms of ocular surface disease: the reasons for patient dissatisfaction with glaucoma treatments. Clin Ophthalmol 2020;14:3675–3680.
Nijm LM, Schweitzer J, Gould Blackmore J. Glaucoma and dry eye disease: opportunity to assess and treat. Clin Ophthalmol 2023;17:3063–3076.
Baudouin C, Renard J-P, Nordmann J-P, Denis P, Lachkar Y, et al. Prevalence and risk factors for ocular surface disease among patients treated over the long term for glaucoma or ocular hypertension. Eur J Ophthalmol 2012.
Benitez-Del-Castillo J, Cantu-Dibildox J, Sanz-González SM, Zanón-Moreno V, Pinazo-Duran MD. Cytokine expression in tears of patients with glaucoma or dry eye disease: a prospective, observational cohort study. Eur J Ophthalmol 2019;29:437–443.
Chen HY, Lin CL, Tsai YY, Kao CH. Association between glaucoma medication usage and dry eye in Taiwan. Optom Vis Sci 2015;92:e227–32.
Kobia-Acquah E, Gyekye GA, Antwi-Adjei EK, Koomson NY, Cobbina F, et al. Assessment of ocular surface disease in glaucoma patients in Ghana. J Glaucoma 2021;30:180–186.
Kim DW, Seo JH, Lim SH. Evaluation of ocular surface disease in elderly patients with glaucoma: expression of matrix metalloproteinase-9 in tears. Eye 2021;35:892–900.
Mohammed I, Kulkarni B, Faraj LA, Abbas A, Dua HS, et al. Profiling ocular surface responses to preserved and non-preserved topical glaucoma medications: A 2‐year randomized evaluation study. Clin Exp Ophthalmol 2020;48:973–982.
Tirpack AR, Vanner E, Parrish JM, Galor A, Hua H-U, et al. Dry eye symptoms and ocular pain in veterans with glaucoma. J Clin Med 2019;8:1076.
Wong TT, Zhou L, Li J, Tong L, Zhao SZ, et al. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci 2011;52:7385–7391.
Larkin DF, Leeming JP. Quantitative alterations of the commensal eye bacteria in contact lens wear. Eye 1991;5 (pt 1):70–74.
Chiang MC, Chern E. Ocular surface microbiota: ophthalmic infectious disease and probiotics. Front Microbiol 2022;13:952473.
Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022;7:1–28.
Dong X, Wang Y, Wang W, Lin P, Huang Y. Composition and diversity of bacterial community on the ocular surface of patients with meibomian gland Dysfunction. Invest Ophthalmol Vis Sci 2019;60:4774–4783.
Shin JH, Lee JW, Lim SH, Yoon BW, Lee Y, et al. The microbiomes of the eyelid and buccal area of patients with uveitic glaucoma. BMC Ophthalmol 2022;22:170.
Ohtani S, Shimizu K, Nejima R, Kagaya F, Aihara M. Conjunctival bacteria flora of glaucoma patients during long-term administration of prostaglandin analog drops. Invest Ophthalmol Vis Sci 2017;58:3991.
Lim SH, Shin JH, Lee JW, Lee Y, Seo JH. Differences in the eyelid and buccal microbiome of glaucoma patients receiving long-term administration of prostaglandin analog drops. Graefes Arch Clin Exp Ophthalmol 2021;259:3055–3065.
Kittipibul T, Puangsricharern V, Chatsuwan T. Comparison of the ocular microbiome between chronic Stevens-Johnson syndrome patients and healthy subjects. Sci Rep 2020;10:4353.
Li Z, Gong Y, Chen S, Li S, Zhang Y, et al. Comparative portrayal of ocular surface microbe with and without dry eye. J Microbiol 2019;57:1025–1032.
Shimizu E, Ogawa Y, Saijo Y, Yamane M, Uchino M, et al. Commensal microflora in human conjunctiva; characteristics of microflora in the patients with chronic ocular graft-versus-host disease. Ocul Surf 2019;17:265–271.
Willis KA, Postnikoff CK, Freeman A, Rezonzew G, Nichols K, et al. The closed eye harbours a unique microbiome in dry eye disease. Sci Rep 2020;10:12035.
Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol 2007;52:369–374.
Gupta N, Chhibber-Goel J, Gupta Y, Mukherjee S, Maitra A, et al. Ocular conjunctival microbiome profiling in dry eye disease: a case control pilot study. Indian J Ophthalmol 2023;71:1574–1581.
Shih KC, Tong L. The Conjunctival microbiome and dry eye: what we know and controversies. Eye Contact Lens 2024;50:208–211.
Zhang Z, Zou X, Xue W, Zhang P, Wang S, et al. Ocular surface microbiota in diabetic patients with dry eye disease. Invest Ophthalmol Vis Sci 2021;62:13.
Neyrinck AM, Catry E, Taminiau B, Cani PD, Bindels LB, et al. Chitin-glucan and pomegranate polyphenols improve endothelial dysfunction. Sci Rep 2019;9:14150.
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016;4:e2584.
Gérard A, El-Hajjaji S, Burteau S, Fall PA, Pirard B, et al. Study of the microbial diversity of a panel of Belgian artisanal cheeses associated with challenge studies for Listeria monocytogenes. Food Microbiol 2021;100:103861.
Jari Oksanen FGB, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package “vegan”. Community ecology packageOctober 24, 2018;2.
Andersson J, Vogt JK, Dalgaard MD, Pedersen O, Holmgaard K, et al. Ocular surface microbiota in patients with aqueous tear-deficient dry eye. Ocul Surf 2021;19:210–217.
Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect 2016;22:643.
Hori Y, Maeda N, Sakamoto M, Koh S, Inoue T, et al. Bacteriologic profile of the conjunctiva in the patients with dry eye. Am J Ophthalmol 2008;146:729–734.
Jiang X, Deng A, Yang J, Bai H, Yang Z, et al. Pathogens in the Meibomian gland and conjunctival sac: microbiome of normal subjects and patients with Meibomian gland dysfunction. Infect Drug Resist 2018;11:1729–1740.
Zhao F, Zhang D, Ge C, Zhang L, Reinach PS, et al. Metagenomic profiling of ocular surface microbiome changes in meibomian gland dysfunction. Invest Ophthalmol Vis Sci 2020;61:22.
Yau JW-K, Hou J, Tsui SKW, Leung TF, Cheng NS, et al. Characterization of ocular and nasopharyngeal microbiome in allergic rhinoconjunctivitis. Pediatr Allergy Immunol 2019;30:624–631.
Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO. Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci 2012;53:5585–5593.
Zhou Y, Holland MJ, Makalo P, Joof H, Roberts CH, et al. The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med 2014;6:99.
Willcox MDP. Characterization of the normal microbiota of the ocular surface. Exp Eye Res 2013;117:99–105.
Kang Y, Lin S, Ma X, Che Y, Chen Y, et al. Strain heterogeneity, cooccurrence network, taxonomic composition and functional profile of the healthy ocular surface microbiome. Eye Vis2021;8:6.
Shivaji S, Jayasudha R, Chakravarthy SK, SaiAbhilash CR, Sai Prashanthi G, et al. Alterations in the conjunctival surface bacterial microbiome in bacterial keratitis patients. Exp Eye Res 2021;203:108418.
Yan Y, Yao Q, Lu Y, Shao C, Sun H, et al. Association between demodex infestation and ocular surface microbiota in patients with demodex blepharitis. Front Med2020;7:592759.
Cavuoto KM, Banerjee S, Miller D, Galor A. Composition and comparison of the ocular surface microbiome in infants and older children. Transl Vis Sci Technol 2018;7:16.
Chen Z, Xiang Z, Cui L, Qin X, Chen S, et al. Significantly different results in the ocular surface microbiome detected by tear paper and conjunctival swab. BMC Microbiol 2023;23:31.
Dong Q, Brulc JM, Iovieno A, Bates B, Garoutte A, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci 2011;52:5408–5413.
Li S, Yi G, Peng H, Li Z, Chen S, et al. How ocular surface microbiota debuts in type 2 diabetes mellitus. Front Cell Infect Microbiol 2019;9:202.
Zou XR, Zhang P, Zhou Y, Yin Y. Ocular surface microbiota in patients with varying degrees of dry eye severity. Int J Ophthalmol 2023;16:1986–1995.
Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 2008;105:17994–17999.
Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest Ophthalmol Vis Sci 2016;57:5116–5126.
Ge C, Wei C, Yang BX, Cheng J, Huang YS. Conjunctival microbiome changes associated with fungal keratitis: metagenomic analysis. Int J Ophthalmol 2019;12:194–200.
Ji X, Dong K, Pu J, Yang J, Zhang Z, et al. Comparison of the ocular surface microbiota between thyroid-associated ophthalmopathy patients and healthy subjects. Front Cell Infect Microbiol 2022;12:914749.
Kim YC, Ham B, Kang KD, Yun JM, Kwon MJ, et al. Bacterial distribution on the ocular surface of patients with primary Sjögren’s syndrome. Sci Rep 2022;12:1715.
Ozkan J, Nielsen S, Diez-Vives C, Coroneo M, Thomas T, et al. Temporal stability and composition of the ocular surface microbiome. Sci Rep 2017;7:9880.
Pickering H, Palmer CD, Houghton J, Makalo P, Joof H, et al. Conjunctival microbiome-host responses are associated with impaired epithelial cell health in both early and late stages of trachoma. Front Cell Infect Microbiol 2019;9:297.
Kugadas A, Christiansen SH, Sankaranarayanan S, Surana NK, Gauguet S, et al. Impact of microbiota on resistance to ocular Pseudomonas aeruginosa-induced keratitis. PLoS Pathog 2016;12:e1005855.
Bolaños-Jiménez R, Navas A, López-Lizárraga EP, de Ribot FM, Peña A, et al. Ocular surface as barrier of innate immunity. Open Ophthalmol J 2015;9:49–55.
St Leger AJ, Desai JV, Drummond RA, Kugadas A, Almaghrabi F, et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T cells. Immunity 2017;47:148–158.
Goldstein MH, Silva FQ, Blender N, Tran T, Vantipalli S. Ocular benzalkonium chloride exposure: problems and solutions. Eye2022;36:361–368.
Lee J, Iwasaki T, Ohtani S, Matsui H, Nejima R, et al. Benzalkonium chloride resistance in Staphylococcus epidermidis on the ocular surface of glaucoma patients under long-term administration of eye drops. Transl Vis Sci Technol 2020;9:9.
Fu Y, Wu J, Wang D, Li T, Shi X, et al. Metagenomic profiling of ocular surface microbiome changes in Demodex blepharitis patients. Front Cell Infect Microbiol 2022;12:922753.
Suzuki T, Kinoshita S. Dual role of cutibacterium acnes: commensal bacterium and pathogen in ocular diseases. Microorganisms 2024;12:1649.
Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 2017;39:1–6.
Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 2015;33:496–503.
Sen EM, Yilmaz MB, Dansuk Z, Aksakal FN, Altinok A, et al. Effect of chronic topical glaucoma medications on aerobic conjunctival bacterial flora. Cornea 2009;28:266–270.
Andersson J, Vogt JK, Dalgaard MD, Pedersen O, Holmgaard K, et al. Ocular surface microbiota in contact lens users and contact-lens-associated bacterial keratitis. Vision 2021;5:27.
Graham JE, Moore JE, Jiru X, Moore JE, Goodall EA, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci 2007;48:5616–5623.
de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome.. Sci Rep 2016;6:23561.
Liang Q, Li J, Zou Y, Hu X, Deng X, et al. Metagenomic analysis reveals the heterogeneity of conjunctival microbiota dysbiosis in dry eye disease.. Front Cell Dev Biol 2021;9:731867.
Ozkan J, Majzoub ME, Coroneo M, Thomas T, Willcox M. Ocular microbiome changes in dry eye disease and meibomian gland dysfunction. Exp Eye Res 2023;235:109615.
Watters GA, Turnbull PR, Swift S, Petty A, Craig JP. Ocular surface microbiome in meibomian gland dysfunction. Clin Exp Ophthalmol 2017;45:105–111.
An Q, Zou H. Ocular surface microbiota dysbiosis contributes to the high prevalence of dry eye disease in diabetic patients. Crit Rev Microbiol 2022;49:1–10.
Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol 2017November 25, 2017;17:212.
Ozkan J, Coroneo M, Willcox M, Wemheuer B, Thomas T. Identification and visualization of a Distinct microbiome in ocular surface conjunctival tissue. Invest Ophthalmol Vis Sci 2018;59:4268–4276.
Simmons KT, Xiao Y, Pflugfelder SC, de Paiva CS. Inflammatory response to lipopolysaccharide on the ocular surface in a murine dry eye model.. Invest Ophthalmol Vis Sci 2016;57:2443–2451.
Wang C, Schaefer L, Bian F, Yu Z, Pflugfelder SC, et al. Dysbiosis modulates ocular surface inflammatory response to lipopolysaccharide.. Invest Ophthalmol Vis Sci 2019;60:4224–4233.
SankaridurgPR,SharmaS,WillcoxM,NaduvilathTJ,SweeneyDF, et al. Bacterial colonization of disposable soft contact lenses is greater during corneal infiltrative events than during asymptomatic extended lens wear.. J Clin Microbiol 2000;38:4420–4424.
Aragona P, Baudouin C, Benitez Del Castillo JM, Messmer E, Barabino S, et al. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv Ophthalmol 2021;66:907–925.
Deng Y, Wen X, Hu X, Zou Y, Zhao C, et al. Geographic difference shaped human ocular surface metagenome of young Han Chinese from Beijing, Wenzhou, and Guangzhou cities.. Invest Ophthalmol Vis Sci 2020;61:47.
Fernández-Rubio ME, Rebolledo-Lara L, Martinez-García M, Alarcón-Tomás M, Cortés-Valdés C. The conjunctival bacterial pattern of diabetics undergoing cataract surgery. Eye (Lond) 2010;24:825–834.
Liang C, Wang L, Wang X, Jia Y, Xie Q, et al. Altered ocular surface microbiota in obesity: a case-control study. Front Cell Infect Microbiol 2024;14:1356197.
Ozkan J, Willcox M, Wemheuer B, Wilcsek G, Coroneo M, et al. Biogeography of the human ocular microbiota. Ocul Surf 2019;17:111–118.
Suwajanakorn O, Puangsricharern V, Kittipibul T, Chatsuwan T. Ocular surface microbiome in diabetes mellitus. Sci Rep 2022;12:21527.
Wen X, Miao L, Deng Y, Bible PW, Hu X, et al. The influence of age and sex on ocular surface microbiota in healthy adults.. Invest Ophthalmol Vis Sci 2017;58:6030–6037.
Adam M, Balcı M, Bayhan HA, İnkaya AÇ, Uyar M, et al. Conjunctival flora in diabetic and nondiabetic individuals. Turk J Ophthalmol 2015;45:193–196.
Bilen H, Ates O, Astam N, Uslu H, Akcay G, et al. Conjunctival flora in patients with type 1 or type 2 diabetes mellitus. Adv Ther 2007;24:1028–1035.
Chen Z, Lin S, Xu Y, Lu L, Zou H. Unique composition of ocular surface microbiome in the old patients with dry eye and diabetes mellitus in a community from Shanghai, China. BMC Microbiol 2024;24:19.
Manaviat MR, Rashidi M, Afkhami-Ardekani M, Shoja MR. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol 2008;8:10.
Moreno NP, Moreno RD, Sousa LB. Aerobic bacterial microbiota of the conjunctiva in diabetic patients with normal and altered glycated hemoglobin levels in two regions in Brazil. Arq Bras Oftalmol 2014;77:351–354.
Shao Z, Shan X, Jing L, Wang W, Li W, et al. Metagenome investigation of ocular microbiota of cataract patients with and without type 2 diabetes. Transl Vis Sci Technol 2023;12:1.
Zilliox MJ, Gange WS, Kuffel G, Mores CR, Joyce C, et al. Assessing the ocular surface microbiome in severe ocular surface diseases. The Ocular Surface 2020;18:706–712.
Zhong Y, Fang X, Wang X, Lin Y-A, Wu H, et al. Effects of sodium hyaluronate eye drops with or without preservatives on ocular surface bacterial microbiota.. Front Med 2022;9:793565.
Dong K, Pu J, Yang J, Zhou G, Ji X, et al. The species-level microbiota of healthy eyes revealed by the integration of metataxonomics with culturomics and genome analysis. Front Microbiol 2022September 2, 2022;13:950591.
Xu S, Zhang H. Bacteriological profile of conjunctiva bacterial Flora in Northeast China: a hospital-based study. BMC Ophthalmol 2022;22:223.
Shin H, Price K, Albert L, Dodick J, Park L, et al. Changes in the eye microbiota associated with contact lens wearing.. mBio 2016;7:e00198.