[en] We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in R-n. In these formulas, p-planes are represented as the column space of n x p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications - computing an invariant subspace of a matrix and the mean of subspaces - are worked out.
Disciplines :
Mathematics
Author, co-author :
Absil, P.-A.
Mahony, R.
Sepulchre, Rodolphe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Riemannian geometry of Grassmann manifolds with a view on algorithmic computation
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Absil, P.-A.: Invariant subspace computation: A geometric approach, Ph.D. thesis, Faculté des Sciences Appliquées, Université de Liège, Secrétariat de la FSA, Chemim des Chevreuils 1 (Bât. B52), 4000 Lièe, Belgium, 2003.
Absil, P.-A., Mahoney, R., Sepulchre, R. and Van Dooren, P.: A Grassmann-Rayleigh quotient iteration for computing invariant subspaces, SIAM Rev. 44(1) (2002), 57-73.
Absil, P.-A., Sepulchre, R., Van Dooren, P. and Mahony, R.: Cubically convergent iterations for invariant subspace computation, SIAM J. Matrix Anal. Appl., to appear.
Absil, P.-A. and Van Dooren, P.: Two-sided Grassmann-Rayleigh quotient iteration, SIAM J. Matrix Anal. Appl. (2002), submitted.
Björk, Å. and Golub, G. H.: Numerical methods for computing angles between linear subspaces, Math. Comp. 27 (1973), 579-594.
Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1975.
Chatelin, F.: Simultaneous Newton's iteration for the eigenproblem, Computing 5(Suppl.) (1984), 67-74.
Chavel, I.: Riemannian Geometry - A Modern Introduction, Cambridge Univ. Press, 1993.
Common, P. and Golub, G. H.: Tracking a few extreme singular values and vectors in signal processing, Proc. IEEE 78(8) (1990), 1327-1343.
Demmel, J. W.: Three methods for refining estimates of invariant subspaces, Computing 38 (1987), 43-57.
Dennis, J. E. and Schnabel, R. B.: Numerial Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, NJ, 1983.
do Carmo, M. P.: Riemannian Geometry, Birkhäuser, 1992.
Doolin, B. F. and Martin, C. F.: Introduction to Differential Geometry for Engineers, Monographs and Textbooks in Pure and Applied Mathematics 136, Marcel Deckker, Inc., New York, 1990.
Edelman, A., Arias, T. A. and Smith, S. T.: The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20(2) (1998), 303-353.
Ferrer, J., García, M. I. and Puerta, F.: Differentiable families of subspaces, Linear Algebra Appl. 199 (1994), 229-252.
Gabay, D.: Minimizing a differentiable function over a differential manifold, J. Optim. Theory Appl. 37(2) (1982), 177-219.
Golub, G. H. and Van Loan, C. F.: Matrix Computations, 3rd edn, The Johns Hopkins Univ. Press, 1996.
Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, Oxford, 1978.
Helmke, U. and Moore, J. B.: Optimization and Dynamical Systems, Springer, 1994.
Karcher, H.: Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30(5) (1977), 509-541.
Kendall, W. S.: Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence, Proc. London Math. Soc. 61(2) (1990), 371-406.
Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. 1, 2, Wiley, 1963.
Leichtweiss, K.: Zur riemannschen Geometrie in grassmannschen Mannigfaltigkeiten, Math. Z. 76 (1961), 334-366.
Luenberger, D. G.: Optimization by Vector Space Methods, Wiley, Inc., 1969.
Lundström, E. and Eldén, L.: Adaptive eigenvalue computations using Newton's method on the Grassmann manifold, SIAM J. Matrix Anal. Appl., 23(3) (2002), 819-839.
Machado, A. and Salavessa, I.: Grassmannian manifolds as subsets of Euclidean spaces, Res. Notes in Math. 131 (1985), 85-102.
Mahony, R. E.: The constrained Newton method on a Lie group and the symmetric eigenvalue problem, Linear Algebra Appl. 248 (1996), 67-89.
Mahony, R. and Manton, J. H.: The geometry of the Newton method on non-compact Lie groups, J. Global Optim. 23(3) (2002), 309-327.
Nomizu, K.: Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
Ran, A. C. M. and Rodman, L.: A class of robustness problems in matrix analysis, In: D. Alpay. I. Gohberg, and V. Vinnikov (eds), Interpolation Theory, Systems Theory and Related Topics, The Harry Dym Anniversary Volume, Operator Theory: Advances and Applications 134, Birkhäuser, 2002, pp. 337-383.
Simoncini, V. and Elden, L.: Inexact Rayleigh quotient-type methods for eigenvalue computations, BIT 42(1) (2002), 159-182.
Smith, S. T.: Geometric optimization methods for adaptive filtering, Ph.D. thesis, Division of Applied Sciences, Harvard University, Cambridge, MA, 1993.
Smith, S. T.: Optimization techniques on Riemannian manifolds, In: A. Bloch (ed.), Hamiltonian and Gradient Flows, Algorithms and Control, Fields Institute Communications, Vol. 3, Amer. Math. Soc., 1994, pp. 113-136.
Stewart, G. W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15(4) (1973), 727-764.
Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Acad. Publ., Dordrecht, 1994.
Wong, Y.-C.: Differential geometry of Grassmann manifolds, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 589-594.
Woods, R. P.: Characterizing volume and surface deformations in an atlas framework: Theory, applications, and implementation, NeuroImage 18(3) (2003), 769-788.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.