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R
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1. Introduction

The majority of available numerical techniques for optimization and nonlinear
equations assume an underlying Euclidean space. Yet many computational prob-
lems are posed on non-Euclidean spaces. Several authors [16, 27, 28, 33, 35] have
proposed abstract algorithms that exploit the underlying geometry (e.g., symmet-
ric, homogeneous, Riemannian) of manifolds on which problems are cast, but the
conversion of these abstract geometric algorithms into numerical procedures in
practical situations is often a nontrivial task that critically relies on an adequate
representation of the manifold.

The present paper contributes to addressing this issue in the case, where the
relevant non-Euclidean space is the set of fixed dimensional subspaces of a given
Euclidean space. This non-Euclidean space is commonly called the Grassmann
manifold. Our motivation for considering the Grassmann manifold comes from the

� Part of this work was done while the author was a Research Fellow with the Belgian National
Fund for Scientific Research (Aspirant du F.N.R.S.) at the University of Liège.
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number of applications that can be formulated as finding zeros of fields defined on
the Grassmann manifold. Examples include invariant subspace computation and
subspace tracking; see, e.g., [9, 10] and references therein.

A simple and robust manner of representing a subspace in computer memory
is in the form of a matrix array of double precision data whose columns span the
subspace. Using this representation technique, we produce formulas for fundamen-
tal Riemannian-geometric objects on the Grassmann manifold endowed with its
canonical metric: gradient, Riemannian connection, parallel translation, geodesics,
and distance. The formulas for the Riemannian connection and geodesics directly
yield a matrix expression for a Newton method on Grassmann, and we illustrate
the applicability of this Newton method on two computational problems cast on
the Grassmann manifold.

The classical Newton method for computing a zero of a function F : R
n → R

n

can be formulated as follows [11, 24]: Solve the Newton equation

DF(x)[η] = −F(x) (1)

for the unknown η ∈ R
n and compute the update

x+ := x + η. (2)

When F is defined on a non-Euclidean manifold, a possible approach is to choose
local coordinates and use the Newton method as in (1)–(2). However, the succes-
sive iterates on the manifold will depend on the chosen coordinate system. Smith
[32, 33] proposes a coordinate-independent Newton method for computing a zero
of aC∞ one-form µ on an abstract complete Riemannian manifoldM. He suggests
to solve the Newton equation

∇ηµ = −µx (3)

for the unknown η ∈ TxM, where ∇ denotes the Riemannian connection (also
called Levi-Civita connection) on M, and update along the geodesic as x+ :=
Expx η. It can be proven that, if x is chosen suitably close to a point x̂ in M such
that µx̂ = 0 and Tx̂M 
 η �→ ∇ηµ is nondegenerate, then the algorithm converges
quadratically to x̂. We will refer to this iteration as the Riemann–Newton method.

In practical cases it may not be obvious to particularize the Riemann–Newton
method into a concrete algorithm. Given a Riemannian manifold M and an initial
point x onM, one may pick a coordinate system containing x, compute the metric
tensor in these coordinates, deduce the Christoffel symbols and obtain a tensorial
equation for (3), but this procedure is often exceedingly complicated and compu-
tationally inefficient. One can also recognize that the Riemann–Newton method
is equivalent to the classical Newton method in normal coordinates at x [28], but
obtaining a tractable expression for these coordinates is often elusive.

On the Grassmann manifold, a formula for the Riemannian connection was
given by Machado and Salavessa in [26]. They identify the Grassmann manifold
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with the set of projectors into subspaces of R
n, embed the set of projectors in the

set of linear maps from R
n to R

n (which is an Euclidean space), and endow this
set with the Hilbert–Schmidt inner product. The induced metric on the Grassmann
manifold is then the essentially unique On-invariant metric mentioned above. The
embedding of the Grassmann manifold in an Euclidean space allows the authors
to compute the Riemannian connection by taking the derivative in the Euclidean
space and projecting the result into the tangent space of the embedded manifold.
They obtain a formula for the Riemannian connection in terms of projectors.

Edelman, Arias and Smith [14] have proposed an expression of the Riemann–
Newton method on the Grassmann manifold in the particular case where µ is the
differential df of a real function f on M. Their approach avoids the derivation
of a formula for the Riemannian connection on Grassmann. Instead, they obtain a
formula for the Hessian (∇�1df )�2 by polarizing the second derivative of f along
the geodesics.

In the present paper, we derive an easy-to-use formula for the Riemannian con-
nection ∇ηξ where η and ξ are arbitrary smooth vector fields on the Grassmann
manifold of p-dimensional subspaces of R

n. This formula, expressed in terms of
n × p matrices, intuitively relates to the geometry of the Grassmann manifold
expressed as a set of equivalence classes of n × p matrices. Once the formula for
Riemannian connection is available, expressions for parallel transport and geodes-
ics follow directly. Expressing the Riemann–Newton method on the Grassmann
manifold for concrete vector fields ξ reduces to a directional derivative in R

n

followed by a projection.
We work out an example where the zeros of ξ are the p-dimensional right-

invariant subspaces of an arbitrary n× n matrix A. This generalizes an application
considered in [14] where ξ was the gradient of a generalized scalar Rayleigh
quotient of a matrix A = AT. The Newton method for our ξ converges locally
quadratically to the nondegenerate zeros of ξ . We show that the rate of convergence
is cubic if and only if the targeted zero of ξ is also a left-invariant subspace of A.
In a second example, the zero of ξ is the mean of a collection of p-dimensional
subspaces of R

n. We illustrate by a numerical experiment the fast convergence of
the Newton algorithm to the mean subspace.

The present paper only requires from the reader an elementary background
in Riemannian geometry (tangent vectors, gradient, parallel transport, geodesics,
distance), which can be read, e.g., from Boothby [6], do Carmo [12] or the introduc-
tory chapter of [8]. The relevant definitions are summarily recalled in the text. Con-
cepts of reductive homogeneous space and symmetric spaces (see [6, 18, 22, 29]
and particularly Sections II.4, IV.3, IV.A and X.2 in the latter) are not needed, but
they can help to get insight into the problem. Although some elementary concepts
of principal fiber bundle theory [22] are used, no specific background is needed.

The paper is organized as follows. In Section 2, the linear subspaces of R
n

are identified with equivalent classes of matrices and the manifold structure of
Grassmann is defined. Section 3 defines a Riemannian structure on Grassmann.
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Formulas are given for Lie brackets, Riemannian connection, parallel transport,
geodesics, and distance between subspaces. The Grassmann–Newton algorithm is
made explicit in Section 4 and practical applications are worked out in detail in
Section 5.

2. The Grassmann Manifold

The goal of this section is to recall relevant facts about the Grassmann manifolds.
More details can be read from [6, 13, 15, 19, 36].

Let n be a positive integer and let p be a positive integer not greater than n. The
set of p-dimensional linear subspaces of R

n (‘linear’ will be omitted in the sequel)
is termed the Grassmann manifold, denoted here by Grass(p, n).

An element Y of Grass(p, n), i.e., a p-dimensional subspace of R
n, can be

specified by a basis, i.e., a set of p vectors y1, . . . , yp such that Y is the set of
all their linear combinations. If the y’s are ordered as the columns of an n-by-p
matrix Y , then Y is said to span Y and Y is said to be the column space (or range,
or image, or span) of Y , and we write Y = span(Y ). The span of an n-by-p matrix
Y is an element of Grass(p, n) if and only if Y has a full rank. The set of such
matrices is termed the noncompact Stiefel manifold�

ST(p, n) := {Y ∈ R
n×p : rank(Y ) = p}.

Given Y ∈ Grass(p, n), the choice of a Y in ST(p, n) such that Y spans Y is
not unique. There are infinitely many possibilities. Given a matrix Y in ST(p, n),
the set of the matrices in ST(p, n) that have the same span as Y is

YGLp := {YM : M ∈ GLp}, (4)

where GLp denotes the set of the p-by-p invertible matrices. This identifies
Grass(p, n) with the quotient space ST(p, n)/GLp := {YGLp : Y ∈ ST(p, n)}. In
fiber bundle theory, the quadruple (GLp,ST(p, n), π,Grass(p, n)) is called a prin-
cipal GLp fiber bundle, with the total space ST(p, n), base space Grass(p, n) =
ST(p, n)/GLp, group action

ST(p, n)× GLp 
 (Y,M) �→ YM ∈ ST(p, n)

and projection map

π : ST(p, n) 
 Y �→ span(Y ) ∈ Grass(p, n).

See, e.g., [22] for the general theory of principal fiber bundles and [15] for a de-
tailed treatment of the Grassmann case. In this paper, we use the notation span(Y )
and π(Y ) to denote the column space of Y .

To each subspace Y corresponds an equivalence class (4) of n-by-p matrices
that span Y, and each equivalence class contains infinitely many elements. It is
� The (compact) Stiefel manifold is the set of orthonormal n× p matrices.
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Figure 1. This is an illustration of Grass(p, n) as the quotient ST(p, n)/GLp for the case
p = 1, n = 2. Each point, the origin excepted, is an element of ST(p, n) = R

2 − {0}.
Each line is an equivalence class of the elements of ST(p, n) that have the same span. So
each line corresponds to an element of Grass(p, n). The affine subspace SW is an affine cross
section as defined in (5). Relation (10) satisfied by the horizontal lift ξ♦ of the tangent vector
ξ ∈ TW Grass(p, n) is also illustrated. This picture can help to get insight into the general case.
One has nonetheless to be careful when drawing conclusions from this picture. For example,
in general there does not exist a submanifold of R

n×p that is orthogonal to the fibers YGLp
at each point, although it is obviously the case where p = 1 (any centered sphere in R

n will
do).

Figure 2. This picture illustrates, for the case p = 2, n = 3, how ξ♦Y represents
an ‘elementary variation’ ξ of the subspace Y spanned by the columns of Y . Con-
sider Y(0) = [y1(0)|y2(0)] and ξ♦Y (0) = [x1|x2]. By the horizontality condition
Y(0)Tξ♦Y (0) = 0, both x1 and x2 are normal to the space Y(0) spanned by Y(0). Let
y1(t) = y1(0) + tx1, y2(t) = y2(0) + tx1 and let Y(t) be the subspace spanned by y1(t)

and y2(t). Then we have ξ = Ẏ(0).

however possible to locally single out a unique matrix in (almost) each equivalence
class, by means of cross sections. Here we will consider affine cross sections, which
are defined as follows (see illustration in Figure 1). LetW ∈ ST(p, n). The matrix
W defines an affine cross section

SW := {Y ∈ ST(p, n) : WT(Y −W) = 0} (5)

orthogonal to the fiber WGLp. Let Y ∈ ST(p, n). If WTY is invertible, then the
equivalence class YGLp (i.e., the set of matrices with the same span as Y ) intersects
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the cross section SW at the single point Y (WTY )−1WTW . IfWTY is not invertible,
which means that the span of W contains an orthogonal direction to the span of Y ,
then the intersection between the fiber WGLp and the section SW is empty. Let

UW := {span(Y ) : WTY is invertible} (6)

be the set of subspaces whose representing fiber YGLp intersects the section SW
The mapping

σW : UW 
 span(Y ) �→ Y (WTY )−1WTW ∈ SW, (7)

which we will call cross section mapping, realizes a bijection between the subset
UW of Grass(p, n) and the affine subspace SW of ST(p, n). The classical manifold
structure of Grass(p, n) is the one that, for all W ∈ ST(p, n), makes σW a dif-
feomorphism between UW and SW (embedded in the Euclidean space R

n×p) [15].
Parameterizations of Grass(p, n) are then given by

R
(n−p)×p 
 K �→ π(W +W⊥K) = span(W +W⊥K) ∈ UW ,

where W⊥ is any element of ST(n− p, n) such that WTW⊥ = 0.

3. Riemannian Structure on Grass(p, n) = ST(p, n)/GLp

The goal of this section is to define a Riemannian metric on Grass(p, n) and then
derive formulas for the associated gradient, connection, and geodesics. For an in-
troduction to Riemannian geometry, see, e.g., [6, 12], or the introductory chapter
of [8].

3.1. TANGENT VECTORS

A tangent vector ξ to Grass(p, n) at W can be thought of as an elementary variation
of the p-dimensional subspace W (see [6, 12] for a more formal definition of a
tangent vector). Here we give a way to represent ξ by a matrix. The principle is to
decompose variations of a basisW of W into a component that does not modify the
span, and a component that does modify the span. The latter represents a tangent
vector of Grass(p, n) at W .

LetW ∈ ST(p, n). The tangent space to ST(p, n) atW , denoted as TWST(p, n),
is trivial: ST(p, n) is an open subset of R

n×p, so ST(p, n) and R
n×p are identical

in a neighbourhood of W , and therefore TWST(p, n) = TWR
n×p which is just a

copy of R
n×p . The vertical space VW is by definition the tangent space to the fiber

WGLp, namely,

VW = WR
p×p = {Wm : m ∈ R

p×p}.
Its elements are the elementary variations of W that do not modify its span. We
define the horizontal space HW as

HW := TWSW = {W⊥K : K ∈ R
(n−p)×p}. (8)
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One readily verifies that HW verifies the characteristic properties of horizontal
spaces in principal fiber bundles [15, 22]. In particular, TWST(p, n) = VW ⊕ HW .
Note that with our choice of HW,�T

V�H = 0 for all �V ∈ VW and �H ∈ HW .
Let ξ be a tangent vector to Grass(p, n) at W and let W span W . According to

the theory of principal fiber bundles [22], there exists one and only one horizontal
vector ξ♦W that represents ξ in the sense that ξ♦W projects to ξ via the span opera-
tion, i.e., dπ(W)ξ♦W = ξ . See Figure 1 for a graphical interpretation. It is easy to
check that

ξ♦W = dσW(W)ξ, (9)

where σW is the cross section mapping defined in (7). Indeed, it is horizontal and
projects to ξ via π since π ◦ σW is locally the identity. The representation ξ♦W
is called the horizontal lift of ξ ∈ TW Grass(p, n) at W . The next proposition
characterizes how the horizontal lift varies along the equivalence class WGLp.

PROPOSITION 3.1. Let W ∈ Grass(p, n), letW span W and ξ ∈ TW Grass(p, n).
Let ξ♦W denote the horizontal lift of ξ at W . Then for allM ∈ GLp,

ξ♦WM = ξ♦WM. (10)

Proof. This comes from (9) and the property σWM(Y) = σW(Y)M. ✷
The homogeneity property (10) and the horizontally of ξ♦W are characteristic

of horizontal lifts.
We now introduce notation for derivatives. Let f be a smooth function between

two linear spaces. We denote by

Df (x)[y] := d

dt
f (x + ty) |t=0

the directional derivative of f at x in the direction of y. Let f be a smooth real-
valued function defined on Grass(p, n) in a neighbourhood of W . We will use the
notation f♦(W) to denote f (span(W)). The derivative of f in the direction of the
tangent vector ξ at W , denoted by ξf , can be computed as

ξf = Df♦(W)[ξ♦W ],
where W spans W .

3.2. LIE DERIVATIVE

A tangent vector field ξ on Grass(p, n) assigns to each Y ∈ Grass(p, n) an element
ξY ∈ TYGrass(p, n).
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PROPOSITION 3.2 (Lie bracket). Let η and ξ be smooth tangent vector fields on
Grass(p, n). Let ξ♦W denote the horizontal lift of ξ at W as defined in (9). Then

[η, ξ ]♦W =  W⊥[η♦W , ξ♦W ], (11)

where

 W⊥ := I −W(WTW)−1WT (12)

denotes the projection into the orthogonal complement of the span of W and

[η♦W , ξ♦W ] = Dξ♦·(W)[η♦W ] − Dη♦·(W)[η♦W ]
denotes the Lie bracket in R

n×p.

That is, the horizontal lift of the Lie bracket of two tangent vector fields on
the Grassmann manifold is equal to the horizontal projection of the Lie bracket of
horizontal lifts of the two tangent vector fields.

Proof. Let W ∈ ST(p, n) be fixed. We prove formula (11) by computing in the
coordinate chart (UW, σW). In order to simplify the notation, let Ŷ := σWY and
ξ̂Ŷ := σW∗YξY. Note that Ŵ = W and ξ̂W = ξ♦W . One has

[η, ξ ]♦W = Dξ̂ .(W)[η̂W ] − Dη̂.(W)[ξ̂W ].
After some manipulations using (5) and (7), it comes

ξ̂Ŷ = d

dt
σW�Ŷ + ξ♦Ŷ t� |t=0= ξ♦Ŷ − Ŷ (WTW)−1WTξ♦Ŷ .

Then, using WTξ♦W = 0,

Dξ̂ .(W)[η̂W ] = Dξ♦·(W)[η̂W ] −W(WTW)−1WTDξ♦·(W)[η̂W ].
The term Dη̂.(W)[ξ̂W ] is directly deduced by interchanging ξ and η, and the result
is proved. ✷

3.3. METRIC

We consider the following metric on Grass(p, n):

〈ξ, η〉Y := trace((Y TY )−1ξT
♦Yη♦Y ), (13)

where Y spans Y. It is easily checked that expression (13) does not depend on the
choice of the basis Y that spans Y. This metric is the only one (up to multiplications
by a constant) to be invariant under the action of On on R

n. Indeed,

trace(((QY )TQY)−1(Qξ♦Y )TQη♦Y ) = trace((Y TY )−1ξT
♦Yη♦Y )
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for all Q ∈ On, and uniqueness is proved in [23]. We will see later that the
definition (13) induces a natural notion of distance between subspaces.

3.4. GRADIENT

On an abstract Riemannian manifold M, the gradient of a smooth real function f
at a point x of M, denoted by grad f (x), is roughly speaking the steepest ascent
vector of f in the sense of the Riemannian metric. More rigorously, grad f (x)
is the element of TxM satisfying 〈grad f (x), ξ 〉 = ξf for all ξ ∈ TxM. On the
Grassmann manifold Grass(p, n) endowed with the metric (13), one checks that

(grad f )♦Y =  Y⊥grad f♦(Y )Y TY, (14)

where  Y⊥ is the orthogonal projection (12) into the orthogonal complement of
Y, f♦(Y ) = f (span(Y )) and grad f♦(Y ) is the Euclidean gradient of f♦ at Y ,
given by (grad f♦(Y ))ij = ∂f♦(Y )

∂Yij
(Y ). The Euclidean gradient is characterized by

Df♦(Y )[Z] = trace(ZTgrad f♦(Y )), ∀Z ∈ R
n×p, (15)

which can ease its computation in some cases.

3.5. RIEMANNIAN CONNECTION

Let ξ, η be two tangent vector fields on Grass(p, n). There is no predefined way of
computing the derivative of ξ in the direction of η because there is no predefined
way of comparing the different tangent spaces TYGrass(p, n) as Y varies. However,
there is a prefered definition for the directional derivative, called the Riemannian
connection (or Levi-Civita connection), defined as follows [6, 12].

DEFINITION 3.3 (Riemannian connection). LetM be a Riemannian manifold and
its metric be denoted by 〈·, ·〉. Let x ∈ M. The Riemannian connection ∇ on M
has the following properties: For all smooth real functions f, g on M, all η, η′ in
TxM and all smooth vector fields ξ, ξ ′:

(1) ∇f η+gη′ξ = f∇ηξ + g∇η′ξ ,
(2) ∇η(f ξ + gξ ′) = f∇ηξ + g∇ηξ ′ + (ηf )ξ + (ηg)ξ ′,
(3) [ξ, ξ ′] = ∇ξ ξ ′ − ∇ξ ′ξ ,
(4) η〈ξ, ξ ′〉 = 〈∇ηξ, ξ ′〉 + 〈ξ,∇ηξ ′〉.

Properties (1) and (2) define connections in general. Property (3) states that
the connection is torsion-free, and property (4) specifies that the metric tensor is
invariant by the connection. A famous theorem of Riemannian geometry states that
there is one and only one connection verifying these four properties. If M is a
submanifold of an Euclidean space, then the Riemannian connection ∇ηξ consists
in taking the derivative of ξ in the ambient Euclidean space in the direction of η
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and projecting the result into the tangent space of the manifold. As we show in the
next theorem, the Riemannian connection on the Grassmann manifold, expressed
in terms of horizontal lifts, works in a similar way.

THEOREM 3.4 (Riemannian connection). Let Y ∈ Grass(p, n), and Y ∈ ST(p, n)
span Y. Let η ∈ TYGrass(p, n), and ξ be a smooth tangent vector field defined in
a neighbourhood of Y. Let ξ♦: W �→ ξ♦W be the horizontal lift of ξ as defined
in (9). Let Grass(p, n) be endowed with the On-invariant Riemannian metric (13)
and let ∇ denote the associated Riemannian connection. Then

(∇ηξ)♦Y =  Y⊥∇η♦Y ξ♦, (16)

where Y⊥ is the projection (12) into the orthogonal complement of Y and

∇η♦Y ξ♦ := Dξ♦·(Y )[η♦Y ] := d

dt
ξ♦(Y+η♦Y t)

∣∣∣∣
t=0

is the directional derivative of ξ♦ in the direction of η♦Y in the Euclidean space
R
n×p.

This theorem says that the horizontal lift of the covariant derivative of a vector
field ξ on Grassmann in the direction of η is equal to the horizontal projection of a
derivative of the horizontal lift of ξ in the direction of the horizontal lift of η.

Proof. One has to prove that (16) satisfies the four characteristic properties of
the Riemannian connection. The two first properties concern linearity in η and ξ
and are easily checked. The torsion-free property is direct from (16) and (11). The
fourth property, invariance of the metric, holds for (16) since

η〈µ, ν〉 = DY trace((Y TY )−1µT
♦Y ν♦Y )(W)[η♦W ]

= trace((WTW)−1DµT
♦·(W)[η♦W ]ν♦W + µT

♦WDν♦·(W)[η♦W ])
= 〈∇ηµ, ν〉 + 〈µ,∇ην〉. ✷

3.6. PARALLEL TRANSPORT

Let t �→ Y(t) be a smooth curve on Grass(p, n). Let ξ be a tangent vector defined
along the curve Y(·). Then ξ is said to be parallel transported along Y(·) if

∇Ẏ(t)ξ = 0 (17)

for all t , where Ẏ(t) denotes the tangent vector to Ẏ(·) at t .
We will need the following classical result of fiber bundle theory [22]. A curve

t �→ Y (t) on ST(p, n) is termed horizontal if Ẏ (t) is horizontal for all t , i.e., Ẏ (t) ∈
HY(t). Let t �→ Y(t) be a smooth curve on Grass(p, n) and let Y0 ∈ ST(p, n) span
Y(0). Then there exists a unique horizontal curve t �→ Y (t) on ST(p, n) such that
Y (0) = Y0 and Y(t) = span(Y (t)). The curve Y (0) is called the horizontal lift of
Y(0) through Y0.
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PROPOSITION 3.5 (Parallel transport). Let t �→ Y(t) be a smooth curve on
Grass(p, n). Let ξ be a tangent vector field on Grass(p, n) defined along Y(·).
Let t �→ Y (t) be a horizontal lift of t �→ Y(t). Let ξ♦Y (t) denote the horizontal lift
of ξ at Y (t) as defined in (9). Then ξ is parallel transported along the curve Y(·)
if and only if

ξ̇♦Y (t) + Y (t)(Y (t)TY (t))−1Ẏ (t)Tξ♦Y (t) = 0, (18)

where ξ̇♦Y (t) := d
dr ξ♦Y (τ)|τ=t .

In other words, the parallel transport of ξ along Y(·) is obtained by infinitesi-
mally removing the vertical component (the second term on the left-hand side of
(18) is vertical) of the horizontal lift of ξ along the horizontal lift of Y(·).

Proof. Let t �→ Y(t), ξ and t �→ Y (t) be as in the statement of the proposition.
Then Ẏ (t) is the horizontal lift of Ẏ(t) at Y (t) and

∇Ẏ(t)ξ =  Y⊥ ξ̇♦Y (t)

by (16), where ξ̇♦Y (t) := d
dτ ξ♦Y (τ)|τ=t . So ∇Ẏ(t)ξ = 0 if and only if  Y⊥ ξ̇♦Y (t) = 0,

i.e., ξ̇♦Y (t) ∈ VY(t), i.e., ξ̇♦Y (t) = Y (t)M(t) for some M(t). Since ξ♦· is hori-
zontal, one has Y Tξ♦Y = 0. Thus Ẏ Tξ♦Y + Y Tξ̇♦Y = 0 and therefore M =
−(Y TY )−1Ẏ Tξ♦Y . ✷

It is interesting to notice that (18) is not symmetric in Ẏ and ξ♦. This is ap-
parently in contradiction to the symmetry of the Riemannian connection, but one
should bear in mind that Y and ξ♦ are not expressions of Y and ξ in a fixed
coordinate chart, so (18) need not be symmetric.

3.7. GEODESICS

We now give a formula for the geodesic t �→ Y(t) with the initial point Y(0) =
Y0 and initial ‘velocity’ Ẏ0 ∈ TY0Grass(p, n). The geodesic is characterized by
∇ẎY = 0, which says that the tangent vector to Y(·) is parallel transported along
Y(·). This expresses the idea that Y(t) goes ‘straight on at constant pace’.

THEOREM 3.6 (Geodesics). Let t �→ Y(t) be a geodesic on Grass(p, n) with
Riemannian metric (13) from Y0 with initial velocity Ẏ0 ∈ TY0Grass(p, n). Let Y0

span Y0, let (Ẏ0)♦Y0 be the horizontal lift of Ẏ0, and (Ẏ0)♦Y0(Y
T
0 Y0)

−1/2 = U,V T

be a thin singular value decomposition, i.e., U is n × p orthonormal, V is p × p
orthonormal, and , is p × p diagonal with nonnegative elements.

Then

Y(t) = span(Y0(Y
T
0 Y0)

−1/2V cos,t + U sin,t). (19)

This expression obviously becomes simpler when Y0 is chosen orthonormal.
The exponential Ẏ0, denoted by Exp(Ẏ0), is by definition Y(t = 1).
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Note that this formula is not new except for the fact that a nonorthonormal Y0 is
allowed. In practice, however, one will prefer to orthonormalize Y0 and use the sim-
plified expression. Edelman, Arias and Smith [14] obtained the orthonormal ver-
sion of the geodesic formula, using the symmetric space structure of Grass(p, n) =
On/(Op ×On−p).

Proof. Let Y(t), Y0, U,V
T be as in the statement of the theorem. Let t �→ Y (t)

be the unique horizontal lift of Y(·) through Y0, so that Ẏ♦Y (t) = Ẏ (t). Then the
formula for parallel transport (18), applied to ξ := Ẏ, yields

Ÿ + Y (Y TY )−1Ẏ TẎ = 0. (20)

Since Y (·) is horizontal, one has

Y T(t)Ẏ (t) = 0 (21)

which is compatible with (20). This implies that Y (t)TY (t) is constant. Moreover,
equations (20) and (21) imply that d

dt Ẏ (t)
TẎ (t) = 0, so Ẏ (t)TẎ (t) is constant.

Consider the thin SVD Ẏ (0)(Y TY )−1/2 = U,V T. From (20), one obtains

Ÿ (t)(Y TY )−1/2 + Y (t)(Y TY )−1/2(Y TY )−1/2(Ẏ TẎ )(Y TY )−1/2 = 0,

Ÿ (t)(Y TY )−1/2 + Y (t)(Y TY )−1/2V,2V T = 0,

Ÿ (t)(Y TY )−1/2V + Y (t)(Y TY )−1/2V,2 = 0

which yields

Y (t)(Y TY )−1/2V = Y0(Y
T
0 Y0)

−1/2V cos,t + Ẏ0(Y
T
0 Y0)

−1/2V,−1 sin,t

and the result follows. ✷
As an aside, Theorem 3.6 shows that the Grassmann manifold is complete, i.e.,

the geodesics can be extended indefinitely [6].

3.8. DISTANCE BETWEEN SUBSPACES

The geodesics can be locally interpreted as curves of the shortest length [6]. This
motivates the following notion of distance between two subspaces.

Let X and Y belong to Grass(p, n) and letX,Y be orthonormal bases for X,Y,
respectively. Let Y ∈ UX (6), i.e.,XTY is invertible. Let X⊥Y (X

TY )−1 = U,V T

be an SVD. Let . = atan,. Then the geodesic

t �→ Exp tξ = span(XV cos.t + U sin.t),

where ξ♦X = U.V T, is the shortest curve on Grass(p, n) from X to Y. The
elements θi of. are called the principal angles between X and Y. The columns of
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XV and those of (XV cos. + U sin.) are the corresponding principal vectors.
The geodesic distance on Grass(p, n) induced by the metric (13) is

dist(X,Y) = √〈ξ, ξ 〉 =
√
θ2

1 + · · · + θ2
p.

Other definitions of distance on Grassmann are given in [14, 4.3]. A classical one
is the projection 2-norm ‖ X− Y‖2 = sin θmax where θmax is the largest principal
angle [17, 34]. An algorithm for computing the principal angles and vectors is
given in [5, 17].

3.9. DISCUSSION

This completes our study of the Riemannian structure of the Grassmann mani-
fold Grass(p, n) using bases, i.e., elements of ST(p, n), to represent its elements.
We are now ready to give, in the next section, a formulation of the Riemann–
Newton method on the Grassmann manifold. Following Smith [33], the function
F in (1) becomes a tangent vector field ξ (Smith works with one-forms, but this
is equivalent because the Riemannian connection leaves the metric invariant [28]).
The directional derivative D in (1) is replaced by the Riemannian connection, for
which we have given a formula in Theorem 3.4. As far as we know, this formula
has never been published, and as we shall see it makes the derivation of the Newton
algorithm very simple for some vector fields ξ . The update (2) is performed along
the geodesic (Theorem 3.6) generated by the Newton vector. Convergence of the
algorithms can be assessed, using the notion of distance defined above.

4. Newton Iteration on the Grassmann Manifold

A number of authors have proposed and developed a general theory of Newton
iteration on Riemannian manifolds [16, 28, 32, 33, 35]. In particular, Smith [33]
proposes an algorithm for abstract Riemannian manifolds which amounts to the
following.

ALGORITHM 4.1 (Riemann–Newton). Let M be a Riemannian manifold, ∇ be
the Levi-Civita connection onM, and ξ be a smooth vector field onM. The Newton
iteration onM for computing a zero of ξ consists in iterating the mapping x �→ x+
defined by:

(1) Solve the Newton equation

∇ηξ = −ξ(x) (22)

for η ∈ TxM.
(2) Compute the update x+ := Exp η, where Exp denotes the Riemannian expo-

nential mapping.

The Riemann–Newton iteration, expressed in the so-called normal coordinates
at x (normal coordinates use the inverse exponential as a coordinate chart [6]),
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reduces to the classical Newton method (1)–(2) [28]. It converges locally quadrat-
ically to nondegenerate zeros of ξ , i.e., the points x such that ξ(x) = 0 and
TxGrass(p, n) 
 η �→ ∇ηξ is invertible (see the proof in Appendix A).

On the Grassmann manifold, the Riemann–Newton iteration yields the follow-
ing algorithm.

THEOREM 4.2 (Grassmann–Newton). Let the Grassmann manifold Grass(p, n)
be endowed with the On-invariant metric (13). Let ξ be a smooth vector field
on Grass(p, n). Let ξ♦ denote the horizontal lift of ξ as defined in (9). Then the
Riemann–Newton method (Algorithm 4.1) on Grass(p, n) for ξ consists in iterating
the mapping Y �→ Y+ defined by:

(1) Pick a basis Y that spans Y and solve the equation

 Y⊥Dξ♦(Y )[η♦Y ] = −ξ♦Y (23)

for the unknown η♦Y in the horizontal space HY = {Y⊥K : K ∈ R
(n−p)×p}.

(2) Compute an SVD η♦Y = U,V T and perform the update

Y+ := span(YV cos, + U sin,). (24)

Proof. Equation (23) is the horizontal lift of Equation (22) where formula (16)
for the Riemannian connection has been used. Equation (24) is the exponential
update given in formula (19). ✷

It often happens that ξ is the gradient (14) of a cost function f, ξ = gradf , in
which case the Newton iteration searches a stationary point of f . In this case, the
Newton equation (23) reads

 Y⊥D( ·⊥grad f♦(·))(Y )[η♦Y ] = − Y⊥grad f♦(Y ),

where formula (14) has been used for the Grassmann gradient. This equation can
be interpreted as the Newton equation in R

n×p

D(grad f♦(·))(Y )[�] = −grad f♦(Y )

projected onto the horizontal space (8). The projection operation cancels out the
directions along the equivalence class YGLp, which intuitively makes sense since
they do not generate variations of the span of Y .

It is often the case that ξ admits the expression

ξ♦Y =  Y⊥F(Y ), (25)

where F is a homogeneous function, i.e., F(YM) = F(Y )M. In this case, the
Newton equation (23) becomes

 Y⊥DF(Y )[η♦Y ] − η♦Y (Y TY )−1Y TF(Y ) = − Y⊥F(Y ), (26)

where we have taken into account that Y Tη♦Y = 0 since η♦Y is horizontal.
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5. Practical Applications of the Newton Method

In this section, we illustrate the applicability of the Grassmann–Newton method
(Theorem 4.2) in two problems that can be cast as computing a zero of a tangent
vector field on the Grassmann manifold.

5.1. INVARIANT SUBSPACE COMPUTATION

Let A be an n× n matrix, and let

ξ♦Y :=  Y⊥AY, (27)

where  Y⊥ denotes the projector (12) into the orthogonal complement of the span
of Y . This expression is homogeneous and horizontal, therefore it is a well-defined
horizontal lift and defines a tangent vector field on Grassmann. Moreover, ξ(Y) =
0 if and only if Y is an invariant subspace of A. Obtaining the Newton equation
(23) for ξ defined in (27) is now extremely simple: the simplification (25) holds
with F(Y ) = AY , and (26) immediately yields

 Y⊥(Aη♦Y − η♦Y (Y TY )−1Y TAY) = − Y⊥AY (28)

which has to be solved for η♦Y in the horizontal space HY (8). The resulting iter-
ation, (28)–(24), converges locally to the nondegenerate zeros of ξ , which are the
spectral� right-invariant subspaces ofA; see [1] for details. The rate of convergence
is quadratic. It is cubic if and only if the zero of ξ is also a left-invariant subspace
of A (see Appendix B). This happens in particular when A = AT.

Edelman, Arias and Smith [14] consider the Newton method on Grassmann for
the Rayleigh quotient cost function f♦(Y ) := trace((Y TY )−1Y TAY), assuming
A = AT. They obtain the same Equation (28), which is not surprising since it can
be shown, using (14), that our ξ is the gradient of their f .

Equation (28) also connects with the method proposed by Chatelin [7] for re-
fining invariant subspace estimates. She considers the equation AY = YB whose
solutions Y ∈ ST(p, n) span invariant subspaces of A and imposes a normalization
condition ZTY = I on Y , where Z is a given n × p matrix. This normalization
condition can be interpreted as restricting Y to a cross section (5). Then she applies
the classical Newton method for finding solutions of AY = YB in the cross section
and obtains an equation similar to (28). The equations are in fact identical if the
matrix Z is chosen to span the current iterate. Following Chatelin’s approach, the
projective update Y+ = span(Y +η♦Y ) is used instead of the geodesic update (24).

The algorithm with projective update is also related to the Grassmannian
Rayleigh quotient iteration (GRQI) proposed in [2]. The two methods are identical
when p = 1 [31]. They differ when p > 1, but they both compute eigenspaces of
A = AT with the cubic rate of convergence. For arbitrary A, a two-sided version
� A right-invariant subspace Y of A is termed spectral if, given [Y | Y⊥] orthogonal such that Y

spans Y, YTAY and YT⊥AY⊥ have no eigenvalue in common [30].
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of GRQI is proposed in [4] that also computes the eigenspaces with the cubic rate
of convergence.

Methods for solving (28) are given in [10] and [25]. Lundström and Eldén [25]
give an algorithm that allows us to solve the equation without explicitly computing
the interaction matrix Y⊥ A Y⊥ . The global behaviour of the iteration is studied in
[3] and heuristics are proposed that enlarge the basins of attraction of the invariant
subspaces.

5.2. MEAN OF SUBSPACES

Let Yi , i = 1, . . . , m, be a collection of p-dimensional subspaces of R
n. We con-

sider the problem of computing the mean of the subspaces Yi . Since Grass(p, n)
is complete, if the subspaces Yi are clustered sufficiently close together, then there
is a unique X that minimizes V (X) := ∑m

i=1 dist2(X,Yi). This X is called the
Karcher mean of the m subspaces [20, 21].

A steepest descent algorithm is proposed in [37] for computing the Karcher
mean of a cluster of points on a Riemannian manifold. Since it is a steepest descent
algorithm, its convergence rate is only linear.

The Karcher mean verifies
∑m
i=1 δ

i = 0 where δi := Exp−1
X Yi . This suggests

to take ξ(X) := ∑m
i=1 Exp−1

X Yi and apply the Riemann–Newton algorithm. On
the Grassmann manifold, however, this idea does not work well because of the
complexity of the relation between Yi and δi , see Section 3. Therefore, we use
another definition of the mean in which δi♦X =  X⊥ YiX, where X spans X, Y i

spans Yi , X⊥ = I − X(XTX)−1XT is the orthogonal projector into the orthog-
onal complement of the span of X, and  Y = Y (Y TY )−1Y T is the orthogonal
projector into the span of Y. While the Karcher mean minimizes

∑m
i=1

∑p

j=1 θ
2
i,j

where θi,j is the j th canonical angle between X and Yi , our modified mean mini-
mizes

∑m
i=1

∑p

j=1 sin2 θi,j . Both definitions are asymptotically equivalent for small
principal angles. Our definition yields

ξ♦X =
m∑
i=1

 X⊥ YiX

and one readily obtains, using (26), the following expression for the Newton equa-
tion

m∑
i=1

( X⊥ Yiη♦X − η♦X(XTX)−1XT YiX) = −
m∑
i=1

 X⊥ YiX

which has to be solved for η♦X in the horizontal space HX = {X⊥K : K ∈
R
(n−p)×p}.

We have tested the resulting Newton iteration in the following situation. We
draw m samples Ki ∈ R

(n−p)×p where the elements of each K are i.i.d. normal
random variables with the zero mean and the standard deviation 1e−2, and define
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Table I.

Newton X+ = X − gradV/m

Iterate number ‖ ∑m
i=1 δ

i dist(X,Y0) ‖∑m
i=1 δ

i dist(X,Y0)

0 2.4561e + 01 2.9322e − 01 2.4561e + 01 2.9322e − 01

1 1.6710e + 00 3.1707e − 02 1.9783e + 01 2.1867e − 01

2 5.7656e − 04 2.0594e − 02 1.6803e + 01 1.6953e − 01

3 2.4207e − 14 2.0596e − 02 1.4544e + 01 1.4911e − 01

4 8.1182e − 16 2.0596e − 02 1.2718e + 01 1.2154e − 01

300 5.6525e − 13 2.0596e − 02

Yi = span(
[
Ip
Ki

]
). The initial iterate is X := Y1 and we define Y0 = span(

[
Ip
0

]
).

The experimental results are shown on Table I.

6. Conclusion

We have considered the Grassmann manifold Grass(p, n) of p-planes in R
n as the

base space of a GLp-principal fiber bundle with the noncompact Stiefel manifold
ST(p, n) as the total space. Using the essentially unique On-invariant metric on
Grass(p, n), we have derived a formula for the Levi-Civita connection in terms
of horizontal lifts. Moreover, formulas have also been given for the Lie bracket,
parallel translation, geodesics, and distance between p-planes. Finally, these results
have been applied to a detailed derivation of the Newton method on the Grassmann
manifold. The Grassmann–Newton method has been illustrated by two examples.

Appendix A. Quadratic Convergence of Riemann–Newton

For completeness we include the proof of quadratic convergence of the Riemann–
Newton iteration (Algorithm 4.1). Our proof significantly differs from the proof
previously reported in the literature [33]. This proof also prepares the discussion
on cubic convergence cases in Appendix B.

Let ξ be a smooth vector field on a Riemannian manifoldM and let ∇ denote the
Riemannian connection. Let z ∈ M be a nondegenerate zero of the smooth vector
field ξ (i.e. ξz = 0 and the linear operator TzM 
 η �→ ∇ηξ ∈ TzM is invertible).
Let Nz be a normal neighbourhood of z, sufficiently small so that any two points
of Nz can be joined by a unique geodesic [6]. Let τxy denote the parallel transport
along the unique geodesic between x and y. Let the tangent vector ζ ∈ TxM be
defined by Expx ζ = z. Define the vector field ζ̃ onNz adapted to the tangent vector
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ζ ∈ TxM by ζ̃y = τxyζ . Applying Taylor’s formula to the function λ �→ ξExpx λζ

yields [33]

0 = ξz = ξx + ∇ζ ξ + 1

2
∇2
ζ ξ + O(ζ 3), (29)

where ∇2
ζ ξ := ∇ζ (∇ζ̃ ξ ). Subtracting Newton equation (22) from Taylor’s formula

(29) yields

∇(η−ζ )ξ = ∇2
ζ ξ + O(ζ 3). (30)

Since ξ is a smooth vector field and z is a nondegenerate zero of ξ , and reducing
the size of Nz if necessary, one has

‖∇αξ‖ � c1‖α‖,
‖∇2

αξ‖ � c3‖α‖2

for all y ∈ Nz and α ∈ TyM. Using these results in (30) yields

c1‖η − ζ‖ � c2‖ζ‖2 + O(ζ 3). (31)

From now on the proof significantly differs from the one in [33]. We will show
next that, reducing again the size of Nz if necessary, there exists a constant c4 such
that

dist(Expy α,Expy β) � c4‖α − β‖ (32)

for all y ∈ Nz and all α, β ∈ TyM small enough for Expy α and Expy β to be in
Nz. Then it follows immediately from (31) and (32) that

dist(x+, z) = dist(Expy η,Expy ζ )

� ‖η − ζ‖ � c2

c1
‖ζ‖2 + O(ζ 3) = O(dist(x, z)2)

and this is the quadratic convergence.
To show (32), we work in local coordinates covering Nz and use tensorial

notation (see, e.g., [6]), so, e.g., ui denotes the coordinates of u ∈ M. Consider
the geodesic equation üi + <ijk(u)u̇

i u̇j = 0 where < stands for the (smooth)
Christoffel symbol, and denote the solution by φi[t, u(0), u̇(0)]. Then (Expy α)

i =
φi[1, y, α], (Expy β)

i = φi[1, y, β], and the curve γ i: τ �→ φi[1, y, α+τ(β−α)]
verifies γ i(0) = (Expy α)

i and γ i(1) = (Expy β)
i . Then

dist(Expy α,Expy β)

�
∫ 1

0

√
gij [γ (τ)]γ̇ i (τ )γ̇ j (τ ) dτ (33)

=
∫ 1

0

√
gij [γ (τ)] ∂φ

i

∂u̇k
[1, y, α + τ(β − α)]∂φ

i

∂u̇@
[1, y, α + τ(β − α)](βk − αk)(β@ − α@) dτ

� c′
√
δk@(β

k − αk)(β@ − α@) (34)

� c4

√
gk@[y](βk − αk)(β@ − α@) (35)

= c4‖β − α‖.
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Equation (33) gives the length of the curve γ (0, 1), for which dist(Expy α,Expy β)
is a lower bound. Equation (34) comes from the fact that the metric tensor gij and
the derivatives of φ are smooth functions defined on a compact set, thus bounded.
Equation (35) comes because gij is nondegenerate and smooth on a compact set.

Appendix B. Cubic Convergence of Riemann–Newton

We use the notation of the previous section.
If ∇2

αξ = 0 for all tangent vectors α ∈ TzM, then the rate of convergence of the
Riemann–Newton method (Algorithm 4.1) is cubic. Indeed, by the smoothness of
ξ , and defining ζx such that Expx ζ = z, one has ∇2

ζ ξ = O(ζ 3), and substituting
this into (30) gives the result.

For the sake of illustration, we consider a particular case whereM is the Grass-
mann manifold Grass(p, n) of p-planes in R

n, A is an n × n real matrix and the
tangent vector field ξ is defined by the horizontal lift (27)

ξ♦Y =  Y⊥AY,

where  Y⊥ := (I − YY T). Let Z ∈ Grass(p, n) satisfy ξZ = 0, which happens
if and only if Z is a right-invariant subspace of A. We show that ∇2

αξ = 0 for
all α ∈ TZGrass(p, n) if and only if Z is a left-invariant subspace of A (which
happens, e.g., when A = AT).

Let Z be an orthonormal basis for Z, i.e., ξ♦Z = 0 and ZTZ = I . Let α♦Z =
U,V T be a thin singular value decomposition of α ∈ TZGrass(p, n). Then the
curve

Y (t) = ZV cos,t + U sin,t

is horizontal and projects through the ‘span’ operation to the Grassmann geodesic
ExpZ tα . Since by definition the tangent vector of a geodesic is parallel transported
along the geodesic, the adaptation α̃ of a verifies

α̃♦Y (t) = Ẏ (t) = U, cos,t − ZV, cos,t.

Then one obtains successively

(∇α̃ξ )♦Y (t) =  Y(t)⊥Dξ♦(Y (t))[α̃♦Y (t)]
=  Y(t)⊥

d

dt
 Y(t)⊥AY(t)

=  Y(t)⊥AẎ (t)− Y(t)⊥Ẏ (t)Y (t)TAY(t)
and

∇2
αξ = (∇α∇α̃ξ )♦Z

=  Z⊥
d

dt
(∇α̃ξ )♦Y (t)|t=0
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= − Z⊥AŸ (0)− Z⊥Ẏ (0)Y (0)
TAẎ (0) −

− Z⊥ Ẏ (0)(Ẏ (0)
TAY(0)+ Y (0)TAẎ (0))

= −2U,V TZTAU,,

where we have used  Y⊥Y = 0, ZTU = 0, UTAZ =  Z⊥AZ = 0. This last
expression vanishes for all α ∈ TZGrass(p, n) if and only if UTATZ = 0 for all U
such that UTZ = 0, i.e., Z is a left-invariant subspace of A.
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