[en] Parasitic helminths induce the production of interleukin-4 (IL-4), which causes the expansion of virtual memory CD8+ T cells (TVM cells), a cell subset that contributes to the control of coinfection with intracellular pathogens. However, the mechanisms regulating IL-4-dependent TVM cell activation and expansion remain ill defined. Here, we used single-cell RNA sequencing of CD8+ T cells to identify pathways that control IL-4-dependent TVM cell responses. Gene signature analysis of CD8+ T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a selective surface marker of IL-4-induced TVM cells. CD22+ TVM cells were enriched for interferon-γ and granzyme A and retained a diverse TCR repertoire while enriched in self-reactive CDR3 sequences. CD22 intrinsically regulated the IL-4-induced CD8+ T cell effector program, resulting in reduced responsiveness of CD22+ TVM cells and regulatory functions to infection and inflammation. Thus, helminth-induced IL-4 drives the expansion and activation of TVM cells that is counterinhibited by CD22.
Research Center/Unit :
FARAH. Santé publique vétérinaire - ULiège
Disciplines :
Immunology & infectious disease
Author, co-author :
Yang, Bin ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Piedfort, Ophélie ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI)
Sanchez-Sanchez, Guillem ; Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium ; ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
Lavergne, Arnaud ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Gong, Meijiao ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Peng, Garrie ; Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada ; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada ; McGill Centre for Microbiome Research, Montreal, Quebec, Canada
Madrigal, Ariel ; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada ; McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
Petrellis, Georgios ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Katsandegwaza, Brunette ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Rodriguez, Lucia Rodriguez ; Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
Balthazar, Alexis ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Vaccinologie vétérinaire
Meyer, Sarah J ; Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
Van Isterdael, Gert ; VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
Van Duyse, Julie ; VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
Andris, Fabienne; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
Bai, Qiang ; Université de Liège - ULiège > Département des sciences fonctionnelles (DSF) ; PhyMedExp, INSERM U1046, University of Montpellier, Montpellier, France
Marichal, Thomas ; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Immunophysiology ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
Machiels, Bénédicte ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Vaccinologie vétérinaire ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
Nitschke, Lars; Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
Najafabadi, Hamed S ; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada ; McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
King, Irah L ; Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada ; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada ; McGill Centre for Microbiome Research, Montreal, Quebec, Canada
Vermijlen, David ; Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium ; ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
Dewals, Benjamin G ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Immunologie vétérinaire ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège FSR - Université de Liège. Fonds spéciaux pour la recherche WELBIO - Walloon Excellence in Life Sciences and Biotechnology
R. L. Pullan, J. L. Smith, R. Jasrasaria, S. J. Brooker, Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit. Vectors 7, 37 (2014).
P. J. Hotez, P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce, J. Jacobson, Helminth infections: The great neglected tropical diseases. J. Clin. Invest. 118, 1311–1321 (2008).
P. M. Jourdan, P. H. L. Lamberton, A. Fenwick, D. G. Addiss, Soil-transmitted helminth infections. Lancet 391, 252–265 (2018).
N. L. Harris, P. Loke, Recent advances in type-2-cell-mediated immunity: Insights from helminth infection. Immunity 47, 1024–1036 (2017).
F. Vacca, G. le Gros, Tissue-specific immunity in helminth infections. Mucosal Immunol. 15, 1212–1223 (2022).
M. Rolot, A. M. Dougall, A. Chetty, J. Javaux, T. Chen, X. Xiao, B. Machiels, M. E. Selkirk, R. M. Maizels, C. Hokke, O. Denis, F. Brombacher, A. Vanderplasschen, L. Gillet, W. G. C. Horsnell, B. G. Dewals, Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nat. Commun. 9, 4516 (2018).
J. S. Lin, K. Mohrs, F. M. Szaba, L. W. Kummer, E. A. Leadbetter, M. Mohrs, Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol. 12, 258–264 (2019).
P. Tripathi, S. C. Morris, C. Perkins, A. Sholl, F. D. Finkelman, D. A. Hildeman, IL-4 and IL-15 promotion of virtual memory CD8+ T cells is determined by genetic background. Eur. J. Immunol. 46, 2333–2339 (2016).
T. Hussain, A. Nguyen, C. Daunt, D. Thiele, E. S. Pang, J. Li, A. Zaini, M. O’Keeffe, C. Zaph, N. L. Harris, K. M. Quinn, N. L. La Gruta, Helminth infection-induced increase in virtual memory CD8 T cells is transient, driven by IL-15, and absent in aged mice. J. Immunol. 210, 297–309 (2023).
B. J. Laidlaw, J. E. Craft, S. M. Kaech, The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. 16, 102–111 (2016).
I. H. Seo, H. S. Eun, J. K. Kim, H. Lee, S. Jeong, S. J. Choi, J. Lee, B. S. Lee, S. H. Kim, W. S. Rou, D. H. Lee, W. Kim, S. H. Park, E. C. Shin, IL-15 enhances CCR5-mediated migration of memory CD8+ T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell Rep. 36, 109438 (2021).
J. Y. Lee, S. E. Hamilton, A. D. Akue, K. A. Hogquist, S. C. Jameson, Virtual memory CD8 T cells display unique functional properties. Proc. Natl. Acad. Sci. U.S.A. 110, 13498–13503 (2013).
C. Haluszczak, A. D. Akue, S. E. Hamilton, L. D. Johnson, L. Pujanauski, L. Teodorovic, S. C. Jameson, R. M. Kedl, The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).
S. Hou, T. Shao, T. Mao, J. Shi, J. Sun, M. Mei, X. Tan, H. Qi, Virtual memory T cells orchestrate extralymphoid responses conducive to resident memory. Sci. Immunol. 6, eabg9433 (2021).
S. C. Jameson, D. Masopust, Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018).
J. T. White, E. W. Cross, R. M. Kedl, Antigen-inexperienced memory CD8+ T cells: Where they come from and why we need them. Nat. Rev. Immunol. 17, 391–400 (2017).
C. H. Miller, D. E. J. Klawon, S. Zeng, V. Lee, N. D. Socci, P. A. Savage, Eomes identifies thymic precursors of self-specific memory-phenotype CD8+ T cells. Nat. Immunol. 21, 567–577 (2020).
V. Martinet, S. Tonon, D. Torres, A. Azouz, M. Nguyen, A. Kohler, V. Flamand, C. A. Mao, W. H. Klein, O. Leo, S. Goriely, Type I interferons regulate eomesodermin expression and the development of unconventional memory CD8+ T cells. Nat. Commun. 6, 7089 (2015).
T. Hussain, K. M. Quinn, Similar but different: Virtual memory CD8 T cells as a memory-like cell population. Immunol. Cell Biol. 97, 675–684 (2019).
K. M. Quinn, A. Fox, K. L. Harland, B. E. Russ, J. Li, T. H. O. Nguyen, L. Loh, M. Olshanksy, H. Naeem, K. Tsyganov, F. Wiede, R. Webster, C. Blyth, X. Y. X. Sng, T. Tiganis, D. Powell, P. C. Doherty, S. J. Turner, K. Kedzierska, N. L. La Gruta, Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep. 23, 3512–3524 (2018).
J. T. White, E. W. Cross, M. A. Burchill, T. Danhorn, M. D. McCarter, H. R. Rosen, B. O’Connor, R. M. Kedl, Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 7, 11291 (2016).
S. C. Jameson, The naming of memory T-cell subsets. Cold Spring Harb. Perspect. Biol. 13, a037788 (2021).
Y. J. Lee, K. L. Holzapfel, J. Zhu, S. C. Jameson, K. A. Hogquist, Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).
M. A. Weinreich, O. A. Odumade, S. C. Jameson, K. A. Hogquist, T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).
A. Drobek, A. Moudra, D. Mueller, M. Huranova, V. Horkova, M. Pribikova, R. Ivanek, S. Oberle, D. Zehn, K. D. McCoy, P. Draber, O. Stepanek, Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 37, e98518 (2018).
M. A. Weinreich, K. Takada, C. Skon, S. L. Reiner, S. C. Jameson, K. A. Hogquist, KLF2 transcription-factor deficiency in T cells results in unrestrained cytokine production and upregulation of bystander chemokine receptors. Immunity 31, 122–130 (2009).
K. R. Renkema, J. Y. Lee, Y. J. Lee, S. E. Hamilton, K. A. Hogquist, S. C. Jameson, IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection. J. Exp. Med. 213, 1319–1329 (2016).
T. Sosinowski, J. T. White, E. W. Cross, C. Haluszczak, P. Marrack, L. Gapin, R. M. Kedl, CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J. Immunol. 190, 1936–1947 (2013).
G. Lauvau, S. Goriely, Memory CD8+ T cells: Orchestrators and key players of innate immunity? PLOS Pathog. 12, e1005722 (2016).
C. Shimokawa, T. Kato, T. Takeuchi, N. Ohshima, T. Furuki, Y. Ohtsu, K. Suzue, T. Imai, S. Obi, A. Olia, T. Izumi, M. Sakurai, H. Arakawa, H. Ohno, H. Hisaeda, CD8+ regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat. Commun. 11, 1922 (2020).
M. Rifa’i, Y. Kawamoto, I. Nakashima, H. Suzuki, Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J. Exp. Med. 200, 1123–1134 (2004).
N. L. Smith, R. K. Patel, A. Reynaldi, J. K. Grenier, J. Wang, N. B. Watson, K. Nzingha, K. J. Yee Mon, S. A. Peng, A. Grimson, M. P. Davenport, B. D. Rudd, Developmental origin governs CD8+ T cell fate decisions during infection. Cell 174, 117–130.e14 (2018).
Y. Maekawa, Y. Minato, C. Ishifune, T. Kurihara, A. Kitamura, H. Kojima, H. Yagita, M. Sakata-Yanagimoto, T. Saito, I. Taniuchi, S. Chiba, S. Sone, K. Yasutomo, Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat. Immunol. 9, 1140–1147 (2008).
D. Aran, A. P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R. P. Naikawadi, P. J. Wolters, A. R. Abate, A. J. Butte, M. Bhattacharya, Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, K. Lidschreiber, M. E. Kastriti, P. Lönnerberg, A. Furlan, J. Fan, L. E. Borm, Z. Liu, D. van Bruggen, J. Guo, X. He, R. Barker, E. Sundström, G. Castelo-Branco, P. Cramer, I. Adameyko, S. Linnarsson, P. V. Kharchenko, RNA velocity of single cells. Nature 560, 494–498 (2018).
Y. Cao, J. Trillo-Tinoco, R. A. Sierra, C. Anadon, W. Dai, E. Mohamed, L. Cen, T. L. Costich, A. Magliocco, D. Marchion, R. Klar, S. Michel, F. Jaschinski, R. R. Reich, S. Mehrotra, J. R. Cubillos-Ruiz, D. H. Munn, J. R. Conejo-Garcia, P. C. Rodriguez, ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun. 10, 1280 (2019).
P. Walter, D. Ron, The unfolded protein response: From stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
K. Haze, H. Yoshida, H. Yanagi, T. Yura, K. Mori, Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).
P. Gade, G. Ramachandran, U. B. Maachani, M. A. Rizzo, T. Okada, R. Prywes, A. S. Cross, K. Mori, D. V. Kalvakolanu, An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc. Natl. Acad. Sci. U.S.A. 109, 10316–10321 (2012).
J. Müller, L. Nitschke, The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat. Rev. Rheumatol. 10, 422–428 (2014).
S. J. Meyer, A. T. Linder, C. Brandl, L. Nitschke, B cell siglecs-news on signaling and its interplay with ligand binding. Front. Immunol. 9, 2820 (2018).
J. V. Pluvinage, M. S. Haney, B. A. H. Smith, J. Sun, T. Iram, L. Bonanno, L. Li, D. P. Lee, D. W. Morgens, A. C. Yang, S. R. Shuken, D. Gate, M. Scott, P. Khatri, J. Luo, C. R. Bertozzi, M. C. Bassik, T. Wyss-Coray, CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).
J. G. Sathish, J. Walters, C. L. Jin, K. G. Johnson, F. G. LeRoy, P. Brennan, K. P. Kim, S. P. Gygi, B. G. Neel, R. J. Matthews, CD22 is a functional ligand for SH2 domain-containing protein-tyrosine phosphatase-1 in primary T cells. J. Biol. Chem. 279, 47783–47791 (2004).
W. H. Hudson, J. Gensheimer, M. Hashimoto, A. Wieland, R. M. Valanparambil, P. Li, J. X. Lin, B. T. Konieczny, S. J. Im, G. J. Freeman, W. J. Leonard, H. T. Kissick, R. Ahmed, Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058.e4 (2019).
A. Tarakhovsky, S. B. Kanner, J. Hombach, J. A. Ledbetter, W. Müller, N. Killeen, K. Rajewsky, A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269, 535–537 (1995).
H. S. Azzam, A. Grinberg, K. Lui, H. Shen, E. W. Shores, P. E. Love, CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).
B. D. Stadinski, K. Shekhar, I. Gómez-Touriño, J. Jung, K. Sasaki, A. K. Sewell, M. Peakman, A. K. Chakraborty, E. S. Huseby, Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat. Immunol. 17, 946–955 (2016).
S. R. Daley, H. F. Koay, K. Dobbs, M. Bosticardo, R. C. Wirasinha, F. Pala, R. Castagnoli, J. H. Rowe, L. M. Ott de Bruin, S. Keles, Y. N. Lee, R. Somech, S. M. Holland, O. M. Delmonte, D. Draper, S. Maxwell, J. Niemela, J. Stoddard, S. D. Rosenzweig, P. L. Poliani, V. Capo, A. Villa, D. I. Godfrey, L. D. Notarangelo, Cysteine and hydrophobic residues in CDR3 serve as distinct T-cell self-reactivity indices. J. Allergy Clin. Immunol. 144, 333–336 (2019).
N. N. Logunova, V. V. Kriukova, P. V. Shelyakin, E. S. Egorov, A. Pereverzeva, N. G. Bozhanova, M. Shugay, D. S. Shcherbinin, M. V. Pogorelyy, E. M. Merzlyak, V. N. Zubov, J. Meiler, D. M. Chudakov, A. S. Apt, O. V. Britanova, MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc. Natl. Acad. Sci. U.S.A. 117, 13659–13669 (2020).
T. Hogan, A. Shuvaev, D. Commenges, A. Yates, R. Callard, R. Thiebaut, B. Seddon, Clonally diverse T cell homeostasis is maintained by a common program of cell-cycle control. J. Immunol. 190, 3985–3993 (2013).
Q. Ge, A. Bai, B. Jones, H. N. Eisen, J. Chen, Competition for self-peptide-MHC complexes and cytokines between naïve and memory CD8+ T cells expressing the same or different T cell receptors. Proc. Natl. Acad. Sci. U.S.A. 101, 3041–3046 (2004).
G. Sano, J. C. Hafalla, A. Morrot, R. Abe, J. J. Lafaille, F. Zavala, Swift development of protective effector functions in naive CD8+ T cells against malaria liver stages. J. Exp. Med. 194, 173–180 (2001).
L. Nitschke, R. Carsetti, B. Ocker, G. Köhler, M. C. Lamers, CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).
J. Müller, I. Obermeier, M. Wohner, C. Brandl, S. Mrotzek, S. Angermuller, P. C. Maity, M. Reth, L. Nitschke, CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl. Acad. Sci. U.S.A. 110, 12402–12407 (2013).
S. Grassmann, L. Mihatsch, J. Mir, A. Kazeroonian, R. Rahimi, S. Flommersfeld, K. Schober, I. Hensel, J. Leube, L. O. Pachmayr, L. Kretschmer, Q. Zhang, A. Jolly, M. Z. Chaudhry, M. Schiemann, L. Cicin-Sain, T. Höfer, D. H. Busch, M. Flossdorf, V. R. Buchholz, Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat. Immunol. 21, 1563–1573 (2020).
M. E. Badr, Z. Zhang, X. Tai, A. Singer, CD8 T cell tolerance results from eviction of immature autoreactive cells from the thymus. Science 382, 534–541 (2023).
J. Li, M. Zaslavsky, Y. Su, J. Guo, M. J. Sikora, V. van Unen, A. Christophersen, S. H. Chiou, L. Chen, J. Li, X. Ji, J. Wilhelmy, A. M. McSween, B. A. Palanski, V. V. A. Mallajosyula, N. A. Bracey, G. K. R. Dhondalay, K. Bhamidipati, J. Pai, L. B. Kipp, J. E. Dunn, S. L. Hauser, J. R. Oksenberg, A. T. Satpathy, W. H. Robinson, C. L. Dekker, L. M. Steinmetz, C. Khosla, P. J. Utz, L. M. Sollid, Y. H. Chien, J. R. Heath, N. Q. Fernandez-Becker, K. C. Nadeau, N. Saligrama, M. M. Davis, KIR+CD8+ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 376, eabi9591 (2022).
S. C. Jameson, Y. J. Lee, K. A. Hogquist, Innate memory T cells. Adv. Immunol. 126, 173–213 (2015).
G. Galletti, G. De Simone, E. M. C. Mazza, S. Puccio, C. Mezzanotte, T. M. Bi, A. N. Davydov, M. Metsger, E. Scamardella, G. Alvisi, F. De Paoli, V. Zanon, A. Scarpa, B. Camisa, F. S. Colombo, A. Anselmo, C. Peano, S. Polletti, D. Mavilio, L. Gattinoni, S. K. Boi, B. A. Youngblood, R. E. Jones, D. M. Baird, E. Gostick, S. Llewellyn-Lacey, K. Ladell, D. A. Price, D. M. Chudakov, E. W. Newell, M. Casucci, E. Lugli, Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).
T. Sekine, A. Perez-Potti, S. Nguyen, J.-B. Gorin, V. H. Wu, E. Gostick, S. Llewellyn-Lacey, Q. Hammer, S. Falck-Jones, S. Vangeti, M. Yu, A. Smed-Sörensen, A. Gaballa, M. Uhlin, J. K. Sandberg, C. Brander, P. Nowak, P. A. Goepfert, D. A. Price, M. R. Betts, M. Buggert, TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci. Immunol. 5, eaba7918 (2020).
T. Wen, M. K. Mingler, C. Blanchard, B. Wahl, O. Pabst, M. E. Rothenberg, The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia. J. Immunol. 188, 1075–1082 (2012).
C. Akatsu, A. A. Deh Sheikh, N. Matsubara, H. Takematsu, A. Schweizer, H. H. M. Abdu-Allah, T. F. Tedder, L. Nitschke, H. Ishida, T. Tsubata, The inhibitory coreceptor CD22 restores B cell signaling by developmentally regulating Cd45−/− immunodeficient B cells. Sci. Signal. 15, eabf9570 (2022).
E. Ventre, L. Brinza, S. Schicklin, J. Mafille, C.-A. A. Coupet, A. Marcais, S. Djebali, V. Jubin, T. Walzer, J. Marvel, Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells. J. Immunol. 189, 3480–3489 (2012).
K. G. C. Smith, D. M. Tarlinton, G. M. Doody, M. L. Hibbs, D. T. Fearon, Inhibition of the B cell by CD22: A requirement for Lyn. J. Exp. Med. 187, 807–811 (1998).
H. J. Kim, X. Wang, S. Radfar, T. J. Sproule, D. C. Roopenian, H. Cantor, CD8+ T regulatory cells express the Ly49 class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc. Natl. Acad. Sci. U.S.A. 108, 2010–2015 (2011).
A. Levescot, N. Cerf-Bensussan, Regulatory CD8+ T cells suppress disease. Science 376, 243–244 (2022).
T. Bouchery, B. Volpe, K. Shah, L. Lebon, K. Filbey, G. LeGros, N. Harris, The study of host immune responses elicited by the model murine hookworms Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Curr. Protoc. Mouse Biol. 7, 236–286 (2017).
G. A. Russell, G. Peng, C. Faubert, E. F. Verdu, S. Hapfelmeier, I. L. King, A protocol for generating germ-free Heligmosomoides polygyrus bakeri larvae for gnotobiotic helminth infection studies. STAR Protoc. 2, 100946 (2021).
E. Montecino-Rodriguez, K. Dorshkind, Use of busulfan to condition mice for bone marrow transplantation. STAR Protoc. 1, 100159 (2020).
X. Zheng, J. D. Oduro, J. D. Boehme, L. Borkner, T. Ebensen, U. Heise, M. Gereke, M. C. Pils, A. Krmpotic, C. A. Guzmán, D. Bruder, L. Čičin-Šain, Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge. PLOS Pathog. 15, e1008036 (2019).
T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck III, Y. Hao, M. Stoeckius, P. Smibert, R. Satija, Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
L. Garcia-Alonso, C. H. Holland, M. M. Ibrahim, D. Turei, J. Saez-Rodriguez, Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019).
G. Korotkevich, V. Sukhov, N. Budin, B. Shpak, M. N. Artyomov, A. Sergushichev, Fast gene set enrichment analysis. bioRxiv 060012 [Preprint] (2021). https://doi.org/10.1101/060012.
D. A. Bolotin, S. Poslavsky, I. Mitrophanov, M. Shugay, I. Z. Mamedov, E. V. Putintseva, D. M. Chudakov, MiXCR: Software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).
M. Shugay, D. V. Bagaev, M. A. Turchaninova, D. A. Bolotin, O. V. Britanova, E. V. Putintseva, M. V. Pogorelyy, V. I. Nazarov, I. V. Zvyagin, V. I. Kirgizova, K. I. Kirgizov, E. V. Skorobogatova, D. M. Chudakov, VDJtools: Unifying post-analysis of T cell receptor repertoires. PLOS Comput. Biol. 11, e1004503 (2015).
R. C. Wirasinha, M. Singh, S. K. Archer, A. Chan, P. F. Harrison, C. C. Goodnow, S. R. Daley, αβ T-cell receptors with a central CDR3 cysteine are enriched in CD8αα intraepithelial lymphocytes and their thymic precursors. Immunol. Cell Biol. 96, 553–561 (2018).