[en] [en] BACKGROUND: Lymphedema is an incurable disease associated with lymphatic dysfunction that causes tissue swelling and fibrosis. We investigated whether lymphedema could be attenuated by interfering with uPARAP (urokinase plasminogen activator receptor-associated protein; Mrc2 gene), an endocytic receptor involved in fibrosis and lymphangiogenesis.
METHODS: We generated mice with lymphatic endothelial cell (LEC)-specific uPARAP deficiency and compared them with constitutive knockout mice by applying a preclinical model of secondary lymphedema (SL). Computerized methods were applied for 2-dimensional and 3-dimensional image quantifications. Cellular effects of uPARAP deletion on lymphatic permeability were assessed by small interfering RNA-mediated silencing in human dermal LECs and a pharmacologic treatment targeting ROCK (rho-associated coiled coil containing kinase), an established regulator of cell junctions. The uPARAP and vascular endothelial cadherin partnership was investigated through proximity ligation assay, coimmunoprecipitation, and immunostaining. An in silico model was generated to analyze the fluid-absorbing function of the lymphatic vasculature. To interfere with uPARAP, its downregulation was achieved in vivo through a gapmer approach.
RESULTS: uPARAP deficiency mitigated several key pathologic features of SL, including hindlimb swelling, epidermal thickening, and the accumulation and size of adipocytes. In both global and LEC-conditional uPARAP-deficient mice, induction of SL led to a distinctive labyrinthine vasculature, defined herein by twisted and hyperbranched vessels with overlapping cells. This topology, mainly composed of pre-collecting vessels, correlated with reduced SL, but not with change in fibrosis, highlighting the importance of uPARAP in regulating LEC functions in a lymphedematous context. In vitro, uPARAP knockdown in LECs impaired vascular endothelial growth factor C-mediated endosomal trafficking of vascular endothelial cadherin and induced overlapping cell junctions. The pharmacologic inhibition of ROCK recapitulated cell superimposition in vitro and the labyrinthine vasculature in vivo with attenuated SL. Computational modeling of labyrinthine lymphatic vasculature supported the observation on their improved fluid-absorbing function in comparison with a normal hierarchic network. These data provide proof of concept of inducing a labyrinthine topology to treat SL. For therapeutic purposes, we validated the use of an anti-uPARAP gapmer to induce a labyrinthine vasculature and attenuate SL formation.
CONCLUSIONS: Our findings provide evidence that downregulating uPARAP expression can induce a beneficial remodeling of lymphatic vasculature that attenuates lymphedema through a cell junction-based mechanism, offering a novel therapeutic pathway for lymphedema.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Gucciardo, Fabrice ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Lebeau, Alizée ✱; Centre Hospitalier Universitaire de Liège - CHU > > Service d'oncologie médicale
Buntinx, Florence ✱; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Ivanova, Elitsa ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Blacher, Silvia ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Brouillard, Pascal ; Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (P.B., M.V
Deroye, Jonathan ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Baudin, Louis ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Pirnay, Alexandra; From the Laboratory of Tumor and Development Biology, GIGA, University of Liège, Sart-Tilman, Belgium. (F.G., A.L., S.P., F.B., E.I., S.B., J.D., L.B., A.P., C.M., M.G.-I., A.N
Morfoisse, Florent ; Université de Liège - ULiège > GIGA > GIGA Cancer - Tumors Biology and Development ; U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, France (F.M
Villette, Claire ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Biomechanics Research Unit Department, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Belgium (C.V., L.G
Nizet, Christophe ; Université de Liège - ULiège > Département des sciences cliniques
Lallemand, François ; Université de Liège - ULiège > Département des sciences cliniques > Radiothérapie
Munaut, Carine ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Alitalo, Kari ; Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland (K.A
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Biomechanics Research Unit Department, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Belgium (C.V., L.G
Vikkula, Miikka ; Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (P.B., M.V ; WELBIO Department, WEL Research Institute, Wavre, Belgium (M.V., A.N
Gautier-Isola, Marine ✱; From the Laboratory of Tumor and Development Biology, GIGA, University of Liège, Sart-Tilman, Belgium. (F.G., A.L., S.P., F.B., E.I., S.B., J.D., L.B., A.P., C.M., M.G.-I., A.N
Noël, Agnès ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire ; WELBIO Department, WEL Research Institute, Wavre, Belgium (M.V., A.N
This work was supported by grants from the Walloon Region through the FRFS-WELBIO strategic research program (WELBIO-CR-2019A\u201303R to Dr Noel; WELBIO-IP X1548.24 to Dr Vikkula), the Fonds de la Recherche Scientifique\u2013FNRS (FRS-FNRS, Belgium) T.0240.23 and P.C005.22 (to Dr Vikkula), the Fondation Contre le Cancer (Foundation of Public Interest, Belgium), the Fonds Sp\u00E9ciaux de la Recherche (University of Li\u00E8ge), the Centre Anticanc\u00E9reux pr\u00E8s l\u2019Universit\u00E9 de Li\u00E8ge, the Fonds L\u00E9on Fredericq (University of Li\u00E8ge), the PROTHERWAL project 7289 from the \u201CDirection G\u00E9n\u00E9rale Op\u00E9rationnelle de l\u2019Economie,\u201D and the Wallonia-Brussels Federation (grant for Concerted Research Actions). This project has received funding from the European Union Horizon 2020 research aid innovation program under grant agreement 874708 (Theralymph). Dr Gucciardo and J. Deroye are supported by a FRS-FNRS-T\u00E9l\u00E9vie grant. Dr Brouillard is a Scientific Logistics Manager of the Genomics Platform of the University of Louvain.
Dixelius J, Mäkinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, Claesson-Welsh L. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278:40973–40979. doi: 10.1074/jbc.M304499200
Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Söderberg O, Anisimov A, Kholová I, Pytowski B, et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 2010;29:1377–1388. doi: 10.1038/emboj.2010.30
Secker GA, Harvey NL. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev Dyn. 2015;244:323–331. doi: 10.1002/dvdy.24227
Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124:898–904. doi: 10.1172/JCI71614
Saaristo A, Tammela T, Timonen J, Yla-Herttuala S, Tukiainen E, Asko-Seljavaara S, Alitalo K. Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J. 2004;18:1707–1709. doi: 10.1096/fj.04-1592fje
Baik JE, Park HJ, Kataru RP, Savetsky IL, Ly CL, Shin J, Encarnacion EM, Cavali MR, Klang MG, Riedel E, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med. 2022;12:e758. doi: 10.1002/ctm2.758
Brown S, Campbell AC, Kuonqui K, Sarker A, Park HJ, Shin J, Kataru RP, Coriddi M, Dayan JH, Mehrara BJ. The future of lymphedema: potential therapeutic targets for treatment. Curr Breast Cancer Rep. 2023;15:233–241. doi: 10.1007/s12609-023-00491-5
Nguyen DH, Zhou A, Posternak V, Rochlin DH. Nanofibrillar collagen scaffold enhances edema reduction and formation of new lymphatic collectors after lymphedema surgery. Plast Reconstr Surg. 2021;148:1382–1393. doi: 10.1097/PRS.0000000000008590
Leppäpuska I-M, Hartiala P, Suominen S, Suominen E, Kaartinen I, Mäki M, Seppänen M, Kiiski J, Viitanen T, Lahdenperä O, et al. Phase 1 Lymfactin study: 24-month efficacy and safety results of combined adenoviral VEGF-C and lymph node transfer treatment for upper extremity lymphedema. J Plast Reconstr Aesthet Surg. 2022;75:3938–3945. doi: 10.1016/j.bjps.2022.08.011
Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (review). Int J Oncol. 2015;47:1177–1188. doi: 10.3892/ijo.2015.3120
Sturge J. Endo180 at the cutting edge of bone cancer treatment and beyond. J Pathol. 2016;238:485–488. doi: 10.1002/path.4673
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci. 2022;79:255. doi: 10.1007/s00018-022-04249-7
Engelholm LH, Ingvarsen S, Jürgensen HJ, Hillig T, Madsen DH, Nielsen BS, Behrendt N. The collagen receptor uPARAP/Endo180. Front Biosci (Landmark Ed). 2009;14:2103–2114. doi: 10.2741/3365
Durré T, Morfoisse F, Erpicum C, Ebroin M, Blacher S, García-Caballero M, Deroanne C, Louis T, Balsat C, Van de Velde M, et al. uPARAP/Endo180 receptor is a gatekeeper of VEGFR-2/VEGFR-3 heterodimerisation during pathological lymphangiogenesis. Nat Commun. 2018;9:5178. doi: 10.1038/s41467-018-07514-1
Buntinx F, Lebeau A, Gillot L, Baudin L, Ndong Penda R, Morfoisse F, Lallemand F, Vottero G, Nizet C, Nizet JL, et al. Single and combined impacts of irradiation and surgery on lymphatic vasculature and fibrosis associated to secondary lymphedema. Front Pharmacol. 2022;13:1016138. doi: 10.3389/fphar.2022.1016138
Fang S, Nurmi H, Heinolainen K, Chen S, Salminen E, Saharinen P, Mikkola HKA, Alitalo K. Critical requirement of VEGF-C in transition to fetal erythropoiesis. Blood. 2016;128:710–720. doi: 10.1182/blood-2015-12-687970
Alitalo AK, Proulx ST, Karaman S, Aebischer D, Martino S, Jost M, Schneider N, Bry M, Detmar M. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis. Cancer Res. 2013;73:4212–4221. doi: 10.1158/0008-5472.CAN-12-4539
Gommes CJ, Bons A-J, Blacher S, Dunsmuir JH, Tsou AH. Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions. AIChE J. 2009;55:2000–2012. doi: 10.1002/aic.11812
Pacchiana R, Abbate M, Armato U, Dal Prà I, Chiarini A. Combining immunofluorescence with in situ proximity ligation assay: a novel imaging approach to monitor protein-protein interactions in relation to sub-cellular localization. Histochem Cell Biol. 2014;142:593–600. doi: 10.1007/s00418-014-1244-8
Dorland YL, Malinova TS, van Stalborch A-MD, Grieve AG, van Geemen D, Jansen NS, de Kreuk B-J, Nawaz K, Kole J, Geerts D, et al. The F-BAR protein pacsin2 inhibits asymmetric VE cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210. doi: 10.1038/ncomms12210
Neto F, Klaus-Bergmann A, Ong YT, Alt S, Vion A-C, Szymborska A, Carvalho JR, Hollfinger I, Bartels-Klein E, Franco CA, et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. eLife. 2018;7:e31037. doi: 10.7554/eLife.31037
Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE cadherin. Nat Cell Biol. 2006;8:1223–1234. doi: 10.1038/ncb1486
Li R, Ren M, Chen N, Luo M, Zhang Z, Wu J. Vitronectin increases vascular permeability by promoting VE cadherin internalization at cell junctions. PLoS One. 2012;7:e37195. doi: 10.1371/journal.pone.0037195
Detournay E, Cheng AH-D. Fundamentals of poroelasticity. In: Fairhurst C, ed. Analysis and Design Methods. Pergamon; 1993:113–171. doi: 10.1016/B978-0-08-040615-2.50011-3
Biot MA. General theory of three-dimensional consolidation. J Appl Phys. 1941;12:155–164. doi: 10.1063/1.1712886
Villette CC, Phillips ATM. Informing phenomenological structural bone remodelling with a mechanistic poroelastic model. Biomech Model Mechanobiol. 2016;15:69–82. doi: 10.1007/s10237-015-0735-4
Pereira AF, Shefelbine SJ. The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability. Biomech Model Mechanobiol. 2014;13:215–225. doi: 10.1007/s10237-013-0498-8
Kameo Y, Adachi T. Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mech. 2014;225:2833–2840. doi: 10.1007/s00707-014-1202-5
Oftadeh R, Azadi M, Donovan M, Langer J, Liao I-C, Ortiz C, Grodzinsky AJ, Luengo GS. Poroelastic behavior and water permeability of human skin at the nanoscale. PNAS Nexus. 2023;2:pgad240. doi: 10.1093/pnasnexus/pgad240
Leng Y, Wang H, de Lucio M, Gomez H. Mixed-dimensional multiscale poroelastic modeling of adipose tissue for subcutaneous injection. Biomech Model Mechanobiol. 2022;21:1825–1840. doi: 10.1007/s10237-022-01622-0
Sachs D, Wahlsten A, Kozerke S, Restivo G, Mazza E. A biphasic multilayer computational model of human skin. Biomech Model Mechanobiol. 2021;20:969–982. doi: 10.1007/s10237-021-01424-w
Huxley VH, Meyer DJ. Capillary permeability: atrial peptide action is independent of “protein effect.” Am J Physiol. 1990;259:H1351–H1356. doi: 10.1152/ajpheart.1990.259.5.H1351
Swartz MA, Kaipainen A, Netti PA, Brekken C, Boucher Y, Grodzinsky AJ, Jain RK. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech. 1999;32:1297–1307. doi: 10.1016/s0021-9290(99)00125-6
Peña-Jimenez D, Fontenete S, Megias D, Fustero-Torre C, Graña-Castro O, Castellana D, Loewe R, Perez-Moreno M. Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J. 2019;38:e101688. doi: 10.15252/embj.2019101688
Cao J, Ehling M, März S, Seebach J, Tarbashevich K, Sixta T, Pitulescu ME, Werner A-C, Flach B, Montanez E, et al. Polarized actin and VE cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun. 2017;8:2210. doi: 10.1038/s41467-017-02373-8
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288:36–55. doi: 10.1111/febs.15453
Barbieri MA, Roberts RL, Mukhopadhyay A, Stahl PD. Rab5 regulates the dynamics of early endosome fusion. Biocell. 1996;20:331–338.
Green EG, Ramm E, Riley NM, Spiro DJ, Goldenring JR, Wessling-Resnick M. Rab11 is associated with transferrin-containing recycling compartments in K562 cells. Biochem Biophys Res Commun. 1997;239:612–616. doi: 10.1006/bbrc.1997.7520
Cao J, Schnittler H. Putting VE cadherin into JAIL for junction remodeling. J Cell Sci. 2019;132:jcs222893. doi: 10.1242/jcs.222893
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE cadherin in the control of vascular permeability. J Cell Sci. 2008;121:2115–2122. doi: 10.1242/jcs.017897
Orsenigo F, Giampietro C, Ferrari A, Corada M, Galaup A, Sigismund S, Ristagno G, Maddaluno L, Young Koh G, Franco D, et al. Phosphorylation of VE cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun. 2012;3:1–15. doi: 10.1038/ncomms2199
Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, Sundvold-Gjerstad V, Gustafsson K, Choy WW, Zang G, et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAD. J Exp Med. 2012;209:1363–1377. doi: 10.1084/jem.20111343
Gavard J. Endothelial permeability and VE cadherin: a wacky comradeship. Cell Adh Migr. 2013;7:455–461. doi: 10.4161/cam.27330
Seebach J, Klusmeier N, Schnittler H. Autoregulatory “multitasking” at endothelial cell junctions by junction-associated intermittent lamellipodia controls barrier properties. Front Physiol. 2020;11:586921. doi: 10.3389/fphys.2020.586921
Lee E, Chan S-L, Lee Y, Polacheck WJ, Kwak S, Wen A, Nguyen DT, Kutys ML, Alimperti S, Kolarzyk AM, et al. A 3D biomimetic model of lymphatics reveals cell–cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proc Natl Acad Sci USA. 2023;120:e2308941120. doi: 10.1073/pnas.2308941120
Mihara M, Hara H, Hayashi Y, Narushima M, Yamamoto T, Todokoro T, Iida T, Sawamoto N, Araki J, Kikuchi K, et al. Pathological steps of cancer-related lymphedema: histological changes in the collecting lymphatic vessels after lymphadenectomy. PLoS One. 2012;7:e41126. doi: 10.1371/journal.pone.0041126
Gagliardi M, Ashizawa AT. The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines. 2021;9:433. doi: 10.3390/biomedicines9040433
Adachi H, Hengesbach M, Yu Y-T, Morais P. From antisense RNA to RNA modification: therapeutic potential of RNA-based technologies. Biomedicines. 2021;9:550. doi: 10.3390/biomedicines9050550