Unpublished conference/Abstract (Scientific congresses and symposiums)
Integrative Modeling of Viral Proteomic Features for Predicting Host Specificity in Plant Viruses: A Genomic-Informed Approach for Epidemiological Monitoring
Simankov, Nikolay; Tahzima, Rachid; Massart, Sébastien et al.
202520ème Rencontre de Virologie Végétale
 

Files


Full Text
RVV_C19_simankov.pptx
Author postprint (13.89 MB) Creative Commons License - Attribution, Non-Commercial, ShareAlike
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Plant viruses; physicochemical properties; proteome-associated functional features; epidemiological control
Abstract :
[en] Plant viruses are the most widespread group of organisms causing plant diseases, representing a major challenge for epidemiological control in our deeply interconnected world, facilitating new encounters between viruses and hosts. Identifying and predicting biological features of viruses may provide a basis for genomic-informed epidemiological monitoring. By combining viral proteome-associated functional features and biological attributes for the well-characterized viral species, our best-performing models reached Cohen’s Kappa scores ranging between 89.8% and 100% in validation for the prediction of horizontal transmission by living vectors. As biological datasets are sensitive to the presence of missing or erroneous labels, our study integrates a pragmatic and innovative methodology that consists of upcycling one-class semi-supervised anomaly detection models to deal with potentially missing labels within the studied biological properties. This allowed us to predict, vectors such as planthoppers, aphids, and whiteflies with Cohen’s Kappa scores of respectively 99.8%, 92,5%, and 92,3%. To further refine our predictive framework, we incorporated an analysis of physicochemical properties and short amino acid kmer frequencies of encoded viral proteins. By leveraging these detailed molecular characteristics, we aimed to enhance the model’s capacity to predict the host plant at the order level with improved accuracy. This approach provides a novel insight into the relationship between viral protein structure and host specificity, offering a potentially valuable tool for preventive identification of susceptible host plants based on viral proteome features.
Research Center/Unit :
Applied Modeling (SIMa) – TERRA – Gembloux AgroBio Tech – University of Liège (ULiège) - 5030 Gembloux
Laboratory of Plant Pathology – TERRA – Gembloux AgroBio Tech – University of Liège (ULiège) - 5030 Gembloux
Disciplines :
Life sciences: Multidisciplinary, general & others
Computer science
Genetics & genetic processes
Agriculture & agronomy
Author, co-author :
Simankov, Nikolay  ;  Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Tahzima, Rachid ;  Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Massart, Sébastien  ;  Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Soyeurt, Hélène  ;  Université de Liège - ULiège > Département GxABT > Modélisation et développement
Language :
English
Title :
Integrative Modeling of Viral Proteomic Features for Predicting Host Specificity in Plant Viruses: A Genomic-Informed Approach for Epidemiological Monitoring
Alternative titles :
[fr] Modélisation intégrative des caractéristiques protéomiques virales pour prédire la spécificité de l'hôte dans les virus des plantes : Une approche fondée sur la génomique pour la surveillance épidémiologique
Publication date :
21 January 2025
Event name :
20ème Rencontre de Virologie Végétale
Event organizer :
INRAE - Institut national de recherche pour l'agriculture, l'alimentation et l'environnement
Event place :
Aussois, France
Event date :
19-24 Janvier 2025
Event number :
20
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
FRIA grant No. FC 52719
Available on ORBi :
since 07 April 2025

Statistics


Number of views
77 (13 by ULiège)
Number of downloads
22 (4 by ULiège)

Bibliography


Similar publications



Contact ORBi