Article (Scientific journals)
Semantic and Geometric Fusion for Object-Based 3D Change Detection in LiDAR Point Clouds
Kharroubi, Abderrazzaq; Remondino, Fabio; Ballouch, Zouhair et al.
2025In Remote Sensing, 17 (7), p. 1311
Peer Reviewed verified by ORBi
 

Files


Full Text
remotesensing-17-01311.pdf
Author postprint (23.8 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
3D change detection; point clouds; semantic segmentation; cut-pursuit; object-based; point-based; LiDAR
Abstract :
[en] Accurate three-dimensional change detection is essential for monitoring dynamic environments such as urban areas, infrastructure, and natural landscapes. Point-based methods are sensitive to noise and lack spatial coherence, while object-based approaches rely on clustering, which can miss fine-scale changes. To address these limitations, we introduce an object-based change detection framework integrating semantic segmentation and geometric change indicators. The proposed method first classifies bi-temporal point clouds into ground, vegetation, buildings, and moving objects. A cut-pursuit clustering algorithm then segments the data into spatially coherent objects, which are matched across epochs using a nearest-neighbor search based on centroid distance. Changes are characterized by a combination of geometric features—including verticality, sphericity, omnivariance, and surface variation—and semantic information. These features are processed by a random forest classifier to assign change labels. The model is evaluated on the Urb3DCD-v2 dataset, with feature importance analysis to identify important features. Results show an 81.83% mean intersection over union. An additional ablation study without clustering reached 83.43% but was more noise-sensitive, leading to fragmented detections. The proposed method improves the efficiency, interpretability, and spatial coherence of change classification, making it well suited for large-scale monitoring applications.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Computer science
Earth sciences & physical geography
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Kharroubi, Abderrazzaq  ;  Université de Liège - ULiège > Sphères
Remondino, Fabio ;  3D Optical Metrology Unit, Bruno Kessler Foundation, 38123 Trento, Italy
Ballouch, Zouhair  ;  Université de Liège - ULiège > Sphères ; College of Geomatic Sciences and Surveying Engineering, Hassan II IAV, Rabat 10101, Morocco
Hajji, Rafika  ;  Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY) ; College of Geomatic Sciences and Surveying Engineering, Hassan II IAV, Rabat 10101, Morocco
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY)
Language :
English
Title :
Semantic and Geometric Fusion for Object-Based 3D Change Detection in LiDAR Point Clouds
Alternative titles :
[fr] Fusion sémantique et géométrique pour la détection de changements 3D basés sur les objets dans les nuages de points LiDAR
Original title :
[en] Semantic and Geometric Fusion for Object-Based 3D Change Detection in LiDAR Point Clouds
Publication date :
06 April 2025
Journal title :
Remote Sensing
eISSN :
2072-4292
Publisher :
MDPI
Volume :
17
Issue :
7
Pages :
1311
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
9. Industry, innovation and infrastructure
13. Climate action
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
Abderrazzaq Kharroubi, Aspirant FNRS
Available on ORBi :
since 07 April 2025

Statistics


Number of views
76 (5 by ULiège)
Number of downloads
23 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi