Article (Scientific journals)
Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718
Bryndza, Guillian; Tchuindjang, Jérôme Tchoufack; Chen, Fan et al.
2025In Materials, 18 (2), p. 276
Peer Reviewed verified by ORBi
 

Files


Full Text
materials-18-00276.pdf
Publisher postprint (18.94 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Inconel 718; Laser Powder Bed Fusion; Creep; Heat Treatment; Microstructure
Abstract :
[en] Inconel 718 (IN718) is a polycrystalline nickel-based superalloy and one of the most widely used materials in the aerospace industry owing to its excellent mechanical performances at high temperatures, including creep resistance. Interest in additively manufactured components in aerospace is greatly increasing due to their ability to reduce material consumption, to manufacture complex parts, and to produce out-of-equilibrium microstructures, which can be beneficial for mechanical behavior. IN718’s properties are, however, very sensitive to microstructural features, which strongly depend on the manufacturing process and subsequent heat treatments. Additive manufacturing and, more specifically, Laser Powder Bed Fusion (LPBF) induces very high thermal gradients and anisotropic features due to its inherently directional nature, which largely defines the microstructure of the alloy. Hence, defining appropriate manufacturing parameters and heat treatments is critical to obtain appropriate mechanical behavior. This review aims to present the main microstructural features of IN718 produced by LPBF, the creep mechanisms taking place, the optimal microstructure for creep strength, and the most efficient heat treatments to yield such an optimized microstructure.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
UEE - Urban and Environmental Engineering - ULiège
Department of Mechanical Engineering - Universidad de La Frontera
Precision for document type :
Review article
Disciplines :
Materials science & engineering
Author, co-author :
Bryndza, Guillian  ;  Université de Liège - ULiège > Urban and Environmental Engineering
Tchuindjang, Jérôme Tchoufack  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Chen, Fan ;  Université de Liège - ULiège > Urban and Environmental Engineering
Habraken, Anne  ;  Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F ; Fonds de la Recherche Scientifique−F.R.S.−F.N.R.S. Belgium, 5 Rue d’Egmont, 1000 Brussels, Belgium
Sepulveda, Hector ;  Université de Liège - ULiège > Urban and Environmental Engineering
Tuninetti, Victor  ;  Université de Liège - ULiège > Département ArGEnCo ; Department of Mechanical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
Mertens, Anne  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Duchene, Laurent  ;  Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Language :
English
Title :
Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718
Publication date :
09 January 2025
Journal title :
Materials
eISSN :
1996-1944
Publisher :
MDPI AG
Special issue title :
Quality, Microstructure and Properties of Metal Alloys (Second Volume)
Volume :
18
Issue :
2
Pages :
276
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
HE - 101091912 - AID4GREENEST - AI powereD characterization and modelling for GREEn STeel technology
Name of the research project :
Smart enhancement of Ni-based superalloys “for-additive-manufacturing” towards improved creep resistance at high temperature
Funders :
FWB - Fédération Wallonie-Bruxelles
F.R.S.-FNRS - Fund for Scientific Research
European Union
Funding number :
23/27-11; 101091912
Funding text :
This research was funded by an “Action de Recherche Concertée” from Fédération Wallonie-Bruxelles (grant ARC 23/27-11 SENSAM+). As research director of F.R.S.-FNRS, A.M. Habraken thanks the Fund for Scientific Research for financial support. AID4GREENEST is funded by the European Union through the Horizon Europe Framework Program (HORIZON) for the modeling and characterization of advanced materials under grant agreement number 101091912.
Available on ORBi :
since 13 January 2025

Statistics


Number of views
22 (8 by ULiège)
Number of downloads
5 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi