Inconel 718; Laser Powder Bed Fusion; Creep; Heat Treatment; Microstructure
Abstract :
[en] Inconel 718 (IN718) is a polycrystalline nickel-based superalloy and one of the most widely used materials in the aerospace industry owing to its excellent mechanical performances at high temperatures, including creep resistance. Interest in additively manufactured components in aerospace is greatly increasing due to their ability to reduce material consumption, to manufacture complex parts, and to produce out-of-equilibrium microstructures, which can be beneficial for mechanical behavior. IN718’s properties are, however, very sensitive to microstructural features, which strongly depend on the manufacturing process and subsequent heat treatments. Additive manufacturing and, more specifically, Laser Powder Bed Fusion (LPBF) induces very high thermal gradients and anisotropic features due to its inherently directional nature, which largely defines the microstructure of the alloy. Hence, defining appropriate manufacturing parameters and heat treatments is critical to obtain appropriate mechanical behavior. This review aims to present the main microstructural features of IN718 produced by LPBF, the creep mechanisms taking place, the optimal microstructure for creep strength, and the most efficient heat treatments to yield such an optimized microstructure.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège UEE - Urban and Environmental Engineering - ULiège Department of Mechanical Engineering - Universidad de La Frontera
Precision for document type :
Review article
Disciplines :
Materials science & engineering
Author, co-author :
Bryndza, Guillian ; Université de Liège - ULiège > Urban and Environmental Engineering
Chen, Fan ; Université de Liège - ULiège > Urban and Environmental Engineering
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F ; Fonds de la Recherche Scientifique−F.R.S.−F.N.R.S. Belgium, 5 Rue d’Egmont, 1000 Brussels, Belgium
Sepulveda, Hector ; Université de Liège - ULiège > Urban and Environmental Engineering
Tuninetti, Victor ; Université de Liège - ULiège > Département ArGEnCo ; Department of Mechanical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
Mertens, Anne ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Language :
English
Title :
Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718
Publication date :
09 January 2025
Journal title :
Materials
eISSN :
1996-1944
Publisher :
MDPI AG
Special issue title :
Quality, Microstructure and Properties of Metal Alloys (Second Volume)
HE - 101091912 - AID4GREENEST - AI powereD characterization and modelling for GREEn STeel technology
Name of the research project :
Smart enhancement of Ni-based superalloys “for-additive-manufacturing” towards improved creep resistance at high temperature
Funders :
FWB - Fédération Wallonie-Bruxelles F.R.S.-FNRS - Fund for Scientific Research European Union
Funding number :
23/27-11; 101091912
Funding text :
This research was funded by an “Action de Recherche Concertée” from Fédération Wallonie-Bruxelles (grant ARC 23/27-11 SENSAM+). As research director of F.R.S.-FNRS, A.M. Habraken thanks the Fund for Scientific Research for financial support. AID4GREENEST is funded by the European Union through the Horizon Europe Framework Program (HORIZON) for the modeling and characterization of advanced materials under grant agreement number 101091912.
Shi J.J. Li X. Zhang Z.X. Cao G.H. Russell A.M. Zhou Z.J. Li C.P. Chen G.F. Study on the Microstructure and Creep Behavior of Inconel 718 Superalloy Fabricated by Selective Laser Melting Mater. Sci. Eng. A 2019 765 138282 10.1016/j.msea.2019.138282
Kumara C. Balachandramurthi A.R. Goel S. Hanning F. Moverare J. Toward a Better Understanding of Phase Transformations in Additive Manufacturing of Alloy 718 Materialia 2020 13 100862 10.1016/j.mtla.2020.100862
Hosseini E. Popovich V.A. A Review of Mechanical Properties of Additively Manufactured Inconel 718 Addit. Manuf. 2019 30 100877 10.1016/j.addma.2019.100877
Zhang D. Niu W. Cao X. Liu Z. Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy Mater. Sci. Eng. A 2015 644 32 40 10.1016/j.msea.2015.06.021
Tucho W.M. Cuvillier P. Sjolyst-Kverneland A. Hansen V. Microstructure and Hardness Studies of Inconel 718 Manufactured by Selective Laser Melting before and after Solution Heat Treatment Mater. Sci. Eng. A 2017 689 220 232 10.1016/j.msea.2017.02.062
Volpato G.M. Tetzlaff U. Fredel M.C. A Comprehensive Literature Review on Laser Powder Bed Fusion of Inconel Superalloys Addit. Manuf. 2022 55 102871 10.1016/j.addma.2022.102871
Kaletsch A. Qin S. Broeckmann C. Influence of Different Build Orientations and Heat Treatments on the Creep Properties of Inconel 718 Produced by PBF-LB Materials 2023 16 4087 10.3390/ma16114087
Shi J.J. Zhou S.A. Chen H.H. Cao G.H. Russell A.M. Zhou Z.J. Qi X.B. Li C.P. Chen G.F. Microstructure and Creep Anisotropy of Inconel 718 Alloy Processed by Selective Laser Melting Mater. Sci. Eng. A 2021 805 140583 10.1016/j.msea.2020.140583
Trosch T. Strößner J. Völkl R. Glatzel U. Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting Mater. Lett. 2016 164 428 431 10.1016/j.matlet.2015.10.136
Sanchez S. Smith P. Xu Z. Gaspard G. Hyde C.J. Wits W.W. Ashcroft I.A. Chen H. Clare A.T. Powder Bed Fusion of Nickel-Based Superalloys: A Review Int. J. Mach. Tools Manuf. 2021 165 103729 10.1016/j.ijmachtools.2021.103729
Catchpole-Smith S. Aboulkhair N. Parry L. Tuck C. Ashcroft I.A. Clare A. Fractal Scan Strategies for Selective Laser Melting of ‘Unweldable’ Nickel Superalloys Addit. Manuf. 2017 15 113 122 10.1016/j.addma.2017.02.002
Xu Z. Hyde C.J. Tuck C. Clare A.T. Creep Behaviour of Inconel 718 Processed by Laser Powder Bed Fusion J. Mater. Process. Technol. 2018 256 13 24 10.1016/j.jmatprotec.2018.01.040
Chaturvedi M.C. Han Y. Creep Deformation of Alloy 718 Superalloy 718 Metallurgy and Applications The Minerals, Metals & Materials Society Warrendale, PA, USA 1989 489 498
Asadi M. Weck A. Eng Dept M. Subray Hegde C.R. Trevor Sawatzky C. Saari H. Constructing a Validated Deformation Mechanisms Map Using Low Temperature Creep Strain Accommodation Processes for Nickel-Base Alloy 718 Proceedings of the Pressure Vessels & Piping Division Conference Toronto, ON, Canada 15–19 July 2012
Kuo Y.L. Horikawa S. Kakehi K. Effects of Build Direction and Heat Treatment on Creep Properties of Ni-Base Superalloy Built up by Additive Manufacturing Scr. Mater. 2017 129 74 78 10.1016/j.scriptamat.2016.10.035
Ioannidou C. König H.H. Semjatov N. Ackelid U. Staron P. Körner C. Hedström P. Lindwall G. In-Situ Synchrotron X-Ray Analysis of Metal Additive Manufacturing: Current State, Opportunities and Challenges Mater. Des. 2022 219 110790 10.1016/j.matdes.2022.110790
Wu S. Peng H.Z. Gao X. Hodgson P.D. Song H.Y. Zhu Y.M. Tian Y. Huang A.J. Improving Creep Property of Additively Manufactured Inconel 718 through Specifically-Designed Post Heat Treatments Mater. Sci. Eng. A 2022 857 144047 10.1016/j.msea.2022.144047
Pröbstle M. Neumeier S. Hopfenmüller J. Freund L.P. Niendorf T. Schwarze D. Göken M. Superior Creep Strength of a Nickel-Based Superalloy Produced by Selective Laser Melting Mater. Sci. Eng. A 2016 674 299 307 10.1016/j.msea.2016.07.061
Sanchez S. Gaspard G. Hyde C.J. Ashcroft I.A. Ravi G.A. Clare A.T. On the Thermomechanical Aging of LPBF Alloy 718 Mater. Sci. Eng. A 2022 841 142998 10.1016/j.msea.2022.142998
Amato K.N. Gaytan S.M. Murr L.E. Martinez E. Shindo P.W. Hernandez J. Collins S. Medina F. Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting Acta Mater. 2012 60 2229 2239 10.1016/j.actamat.2011.12.032
Drexler A. Fischersworring-Bunk A. Oberwinkler B. Ecker W. Gänser H.P. A Microstructural Based Creep Model Applied to Alloy 718 Int. J. Plast. 2018 105 62 73 10.1016/j.ijplas.2017.11.003
Popovich V.A. Borisov E.V. Popovich A.A. Sufiiarov V.S. Masaylo D.V. Alzina L. Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties Mater. Des. 2017 114 441 449 10.1016/j.matdes.2016.10.075
Kuo Y.L. Kamigaichi A. Kakehi K. Characterization of Ni-Based Superalloy Built by Selective Laser Melting and Electron Beam Melting Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2018 49 3831 3837 10.1007/s11661-018-4769-y
Du J. Lu X. Deng Q. Bi Z. Progress in the Research and Manufacture of GH4169 Alloy J. Iron Steel Res. Int. 2015 22 657 663 10.1016/S1006-706X(15)30054-6
Li R.B. Yao M. Liu W.C. He X.C. Isolation and Determination for Delta, Gamma Prime and Gamma Double Prime Phases in Inconel 718 Alloy Scr. Mater. 2002 46 635 638 10.1016/S1359-6462(02)00041-6
Wang C. Li R. Effect of Double Aging Treatment on Structure in Inconel 718 Alloy J. Mater. Sci. 2004 39 2593 2595 10.1023/B:JMSC.0000020036.96777.9c
Cozar R. Pineau A. Morphology of Y’ and Y" Precipitates and Thermal Stability of Inconel 718 Type Alloys Metall. Trans. 1973 4 47 59 10.1007/BF02649604
Radavich J.F. The Physical Metallurgy of Cast and Wrought Alloy 718 Superalloy 718 Metallurgy and Applications The Minerals, Metals & Materials Society Warrendale, PA, USA 1989 229 240
Cao G.H. Sun T.Y. Wang C.H. Li X. Liu M. Zhang Z.X. Hu P.F. Russell A.M. Schneider R. Gerthsen D. et al. Investigations of Γ′ Γ″ and δ Precipitates in Heat-Treated Inconel 718 Alloy Fabricated by Selective Laser Melting Mater. Charact. 2018 136 398 406 10.1016/j.matchar.2018.01.006
Devaux A. Nazé L. Molins R. Pineau A. Organista A. Guédou J.Y. Uginet J.F. Héritier P. Gamma Double Prime Precipitation Kinetic in Alloy 718 Mater. Sci. Eng. A 2008 486 117 122 10.1016/j.msea.2007.08.046
Rezende M.C. Araujo L.S. Gabriel S.B. Dos Santos D.S. De Almeida L.H. Hydrogen Embrittlement in Nickel-Based Superalloy 718: Relationship between γ’ + γ’’ Precipitation and the Fracture Mode Int. J. Hydrogen Energy 2015 40 17075 17083 10.1016/j.ijhydene.2015.07.053
Strondl A. Fischer R. Frommeyer G. Schneider A. Investigations of MX and Γ′/Γ″ Precipitates in the Nickel-Based Superalloy 718 Produced by Electron Beam Melting Mater. Sci. Eng. A 2008 480 138 147 10.1016/j.msea.2007.07.012
Sundararaman M. Mukhopadhyay P. Banerjee S. Some Aspects of the Precipitation of Metastable Intermetallic Phases in INCONEL 718 Metall. Trans. A 1992 23A 2015 2028 10.1007/BF02647549
McNamara K. Ji Y. Lia F. Promoppatum P. Yao S.C. Zhou H. Wang Y. Chen L.Q. Martukanitz R.P. Predicting Phase Transformation Kinetics during Metal Additive Manufacturing Using Non-Isothermal Johnson-Mehl-Avrami Models: Application to Inconel 718 and Ti-6Al-4V Addit. Manuf. 2022 49 102478 10.1016/j.addma.2021.102478
Azadian S. Wei L.Y. Warren R. Delta Phase Precipitation in Inconel 718 Mater. Charact. 2004 53 7 16 10.1016/j.matchar.2004.07.004
Gao M. Wei R.P. Grain Boundary Niobium Carbides in Inconel 718 Scr. Mater. 1997 37 1843 1849 10.1016/S1359-6462(97)00373-4
Ferreri N.C. Vogel S.C. Knezevic M. Determining Volume Fractions of γ, Γ′, Γ″, δ, and MC-Carbide Phases in Inconel 718 as a Function of Its Processing History Using an Advanced Neutron Diffraction Procedure Mater. Sci. Eng. A 2020 781 139228 10.1016/j.msea.2020.139228
Zhao Y. Guan K. Yang Z. Hu Z. Qian Z. Wang H. Ma Z. The Effect of Subsequent Heat Treatment on the Evolution Behavior of Second Phase Particles and Mechanical Properties of the Inconel 718 Superalloy Manufactured by Selective Laser Melting Mater. Sci. Eng. A 2020 794 139931 10.1016/j.msea.2020.139931
Denda T. Bretz P.L. Tien J.K. Inclusion Size Effect on the Fatigue Crack Propagation Mechanism and Fracture Mechanics of a Superalloy Metall. Trans. A 1992 23A 519 526 10.1007/BF02801169
Texier D. Gómez A.C. Pierret S. Franchet J.M. Pollock T.M. Villechaise P. Cormier J. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature Metall. Mater. Trans. A 2016 47 1096 1109 10.1007/s11661-015-3291-8
Texier D. Cormier J. Villechaise P. Stinville J.C. Torbet C.J. Pierret S. Pollock T.M. Crack Initiation Sensitivity of Wrought Direct Aged Alloy 718 in the Very High Cycle Fatigue Regime: The Role of Non-Metallic Inclusions Mater. Sci. Eng. A 2016 678 122 136 10.1016/j.msea.2016.09.098
Lim K.H. Ryou K.H. Choi J.H. Choi G. Choi W.S. Lee J.H. Oh C.S. Choi P.P. Sim G.D. Effect of Titanium Nitride Inclusions on the Mechanical Properties of Direct Laser Deposited Inconel 718 Extreme Mech. Lett. 2023 61 102009 10.1016/j.eml.2023.102009
Ni T. Dong J. Creep Behaviors and Mechanisms of Inconel718 and Allvac718plus Mater. Sci. Eng. A 2017 700 406 415 10.1016/j.msea.2017.06.032
Sundararaman M. Mukhopadhyay P. Banerjee S. Precipitation of the Delta-Ni3Nb Phase in Two Nickel Base Superalloys Metall. Trans. A 1988 19 453 465 10.1007/BF02649259
An X.L. Zhang B. Chu C.L. Zhou L. Chu P.K. Evolution of Microstructures and Properties of the GH4169 Superalloy during Short-Term and High-Temperature Processing Mater. Sci. Eng. A 2019 744 255 266 10.1016/j.msea.2018.12.019
Chen W. Chaturvedi M.C. Dependence of Creep Fracture of Inconel 718 on Grain Boundary Precipitates Acta Mater. 1997 45 2735 2746 10.1016/S1359-6454(96)00399-0
Nie P. Ojo O.A. Li Z. Numerical Modeling of Microstructure Evolution during Laser Additive Manufacturing of a Nickel-Based Superalloy Acta Mater. 2014 77 85 95 10.1016/j.actamat.2014.05.039
Zhang Q. Li H. Yang Y. Effects of Solution Heat Treatment on Laves Phase and Corrosion Behaviors in Selective Laser Melted Inconel 718 Alloy Proceedings of the IOP Conference Series: Materials Science and Engineering IOP Publishing Ltd. Bristol, UK 2019 Volume 677
Liu F. Lyu F. Liu F. Lin X. Huang C. Laves Phase Control of Inconel 718 Superalloy Fabricated by Laser Direct Energy Deposition via ı Aging and Solution Treatment J. Mater. Res. Technol. 2020 9 9753 9765 10.1016/j.jmrt.2020.06.061
Saboori A. Di Torino P. Aversa A. Politecnico E.B. Torino D. Marchese G. Bassini E. Mazzucato F. Valente A. Lombardi M. et al. Effect of Heat Treatment on Microstructural Evolution of Additively Manufactured Inconel 718 and Cast Alloy Proceedings of the Euro PM2019—Post treatment Maastricht, The Netherlands 13–16 October 2019
Ni M. Liu S. Chen C. Li R. Zhang X. Zhou K. Effect of Heat Treatment on the Microstructural Evolution of a Precipitation-Hardened Superalloy Produced by Selective Laser Melting Mater. Sci. Eng. A 2019 748 275 285 10.1016/j.msea.2019.01.109
Zhang Z. Khong J.C. Koe B. Luo S. Huang S. Qin L. Cipiccia S. Batey D. Bodey A.J. Rau C. et al. Multiscale Characterization of the 3D Network Structure of Metal Carbides in a Ni Superalloy by Synchrotron X-Ray Microtomography and Ptychography Scr. Mater. 2021 193 71 76 10.1016/j.scriptamat.2020.10.032
Gao L. Chuang A.C. Kenesei P. Ren Z. Balderson L. Sun T. An Operando Synchrotron Study on the Effect of Wire Melting State on Solidification Microstructures of Inconel 718 in Wire-Laser Directed Energy Deposition Int. J. Mach. Tools Manuf. 2024 194 104089 10.1016/j.ijmachtools.2023.104089
Yong C.K. Keating E.M. Hughes D.J. Connolley T. West G. Wong C.C. Gibbons G.J. Assessment of Residual Strain in Laser Shock Peened Additive Manufactured Inconel 718 Using Synchrotron X-Ray Diffraction Materialia 2023 30 101843 10.1016/j.mtla.2023.101843
Prasad K. Obana M. Ito A. Torizuka S. Synchrotron Diffraction Characterization of Dislocation Density in Additively Manufactured IN 718 Superalloy Mater. Charact. 2021 179 111379 10.1016/j.matchar.2021.111379
Chen W.Y. Zhang X. Li M. Xu R. Zhao C. Sun T. Laser Powder Bed Fusion of Inconel 718 on 316 Stainless Steel Addit. Manuf. 2020 36 101500 10.1016/j.addma.2020.101500
Laquai R. Müller B.R. Schneider J.A. Kupsch A. Bruno G. Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020 51 4146 4157 10.1007/s11661-020-05847-5
Lu W. Luo X. Wang Y. Huang B. Wang Z. Yang Y. Γ′′ Phase Transformation, Precipitation Hardening, Hetero-Deformation Induced Hardening and Deformation Mechanisms in a Nb-Alloyed Medium-Entropy Alloy Mater. Des. 2023 225 111477 10.1016/j.matdes.2022.111477
Oblak J.M. Paulonis D.F. Duvall D.S. Coherency Strengthening in Ni Base Alloys Hardened by D022 Precipitates Metall. Trans. 1974 5 143 153 10.1007/BF02642938
Gallmeyer T.G. Moorthy S. Kappes B.B. Mills M.J. Amin-Ahmadi B. Stebner A.P. Knowledge of Process-Structure-Property Relationships to Engineer Better Heat Treatments for Laser Powder Bed Fusion Additive Manufactured Inconel 718 Addit. Manuf. 2020 31 100977 10.1016/j.addma.2019.100977
Lv D.C. McAllister D. Mills M.J. Wang Y. Deformation Mechanisms of D022 Ordered Intermetallic Phase in Superalloys Acta Mater. 2016 118 350 361 10.1016/j.actamat.2016.07.055
Phillips P.J. McAllister D. Gao Y. Lv D. Williams R.E.A. Peterson B. Wang Y. Mills M.J. Nano Γ′γ″ Composite Precipitates in Alloy 718 Appl. Phys. Lett. 2012 100 211913 10.1063/1.4721456
McAllister D. Lv D. Peterson B. Deutchman H. Wang Y. Mills M.J. Lower Temperature Deformation Mechanisms in a Γ″-Strengthened Ni-Base Superalloy Scr. Mater. 2016 115 108 112 10.1016/j.scriptamat.2015.11.026
Kovarik L. Unocic R.R. Li J. Sarosi P. Shen C. Wang Y. Mills M.J. Microtwinning and Other Shearing Mechanisms at Intermediate Temperatures in Ni-Based Superalloys Prog. Mater. Sci. 2009 54 839 873 10.1016/j.pmatsci.2009.03.010
Brooks J.W. Bridges P.J. Metallurgical Stability of Inconel Alloy 718 Proceedings of the Superalloys 1998 The Minerals, Metals and Materials Society Pittsburgh, PA, USA 1988 33 42
Huynh T. Mehta A. Graydon K. Woo J. Park S. Hyer H. Zhou L. Imholte D.D. Woolstenhulme N.E. Wachs D.M. et al. Microstructural Development in Inconel 718 Nickel-Based Superalloy Additively Manufactured by Laser Powder Bed Fusion Metallogr. Microstruct. Anal. 2022 11 88 107 10.1007/s13632-021-00811-0
Sanchez S. Gaspard G. Hyde C.J. Ashcroft I.A. Ravi G.A. Clare A.T. The Creep Behaviour of Nickel Alloy 718 Manufactured by Laser Powder Bed Fusion Mater. Des. 2021 204 109647 10.1016/j.matdes.2021.109647
Li X. Shi J.J. Wang C.H. Cao G.H. Russell A.M. Zhou Z.J. Li C.P. Chen G.F. Effect of Heat Treatment on Microstructure Evolution of Inconel 718 Alloy Fabricated by Selective Laser Melting J. Alloys Compd. 2018 764 639 649 10.1016/j.jallcom.2018.06.112
Kouraytem N. Varga J. Amin-Ahmadi B. Mirmohammad H. Chanut R.A. Spear A.D. Kingstedt O.T. A Recrystallization Heat-Treatment to Reduce Deformation Anisotropy of Additively Manufactured Inconel 718 Mater. Des. 2021 198 109228 10.1016/j.matdes.2020.109228
Scime L. Beuth J. Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process Addit. Manuf. 2019 29 100830 10.1016/j.addma.2019.100830
Rosenthal I. Weaver J.S. Moylan S. The Influence of the Melt Pool Structure on the Mechanical Properties of Laser Powder Bed Fusion Nickel Superalloy 625 Mater. Today Commun. 2023 36 106810 10.1016/j.mtcomm.2023.106810
Mertens A. Delahaye J. Dedry O. Vertruyen B. Tchuindjang J.T. Habraken A.M. Microstructure and Properties of SLM AlSi10Mg: Understanding the Influence of the Local Thermal History Proceedings of the 23rd International Conference on Material Forming (ESAFORM 2020) Online 4–8 May 2020 Elsevier B.V. Amsterdam, The Netherlands 2020 Volume 47 1089 1095
Tang M. Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting JOM 2017 69 516 522 10.1007/s11837-016-2230-5
Zhang D. Zhang P. Liu Z. Feng Z. Wang C. Guo Y. Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy Addit. Manuf. 2018 21 567 578 10.1016/j.addma.2018.03.031
Wang J. Zhu R. Liu Y. Zhang L. Understanding Melt Pool Characteristics in Laser Powder Bed Fusion: An Overview of Single- and Multi-Track Melt Pools for Process Optimization Adv. Powder Mater. 2023 2 100137 10.1016/j.apmate.2023.100137
Coen V. Goossens L. Hooreweder B. Van Methodology and Experimental Validation of Analytical Melt Pool Models for Laser Powder Bed Fusion J. Mater. Process. Technol. 2022 304 117547 10.1016/j.jmatprotec.2022.117547
Kanagarajah P. Brenne F. Niendorf T. Maier H.J. Inconel 939 Processed by Selective Laser Melting: Effect of Microstructure and Temperature on the Mechanical Properties under Static and Cyclic Loading Mater. Sci. Eng. A 2013 588 188 195 10.1016/j.msea.2013.09.025
Wang L.Y. Zhou Z.J. Li C.P. Chen G.F. Zhang G.P. Comparative Investigation of Small Punch Creep Resistance of Inconel 718 Fabricated by Selective Laser Melting Mater. Sci. Eng. A 2019 745 31 38 10.1016/j.msea.2018.12.083
Chauvet E. Kontis P. Jägle E.A. Gault B. Raabe D. Tassin C. Blandin J.J. Dendievel R. Vayre B. Abed S. et al. Hot Cracking Mechanism Affecting a Non-Weldable Ni-Based Superalloy Produced by Selective Electron Beam Melting Acta Mater. 2018 142 82 94 10.1016/j.actamat.2017.09.047
Tao P. Li H. Huang B. Hu Q. Gong S. Xu Q. The Crystal Growth, Intercellular Spacing and Microsegregation of Selective Laser Melted Inconel 718 Superalloy Vacuum 2019 159 382 390 10.1016/j.vacuum.2018.10.074
Calandri M. Yin S. Aldwell B. Calignano F. Lupoi R. Ugues D. Texture and Microstructural Features at Different Length Scales in Inconel 718 Produced by Selective Laser Melting Materials 2019 12 1293 10.3390/ma12081293 31010189
Gokcekaya O. Ishimoto T. Hibino S. Yasutomi J. Narushima T. Nakano T. Unique Crystallographic Texture Formation in Inconel 718 by Laser Powder Bed Fusion and Its Effect on Mechanical Anisotropy Acta Mater. 2021 212 116876 10.1016/j.actamat.2021.116876
Zhang D. Feng Z. Wang C. Wang W. Liu Z. Niu W. Comparison of Microstructures and Mechanical Properties of Inconel 718 Alloy Processed by Selective Laser Melting and Casting Mater. Sci. Eng. A 2018 724 357 367 10.1016/j.msea.2018.03.073
Wei H.L. Mazumder J. DebRoy T. Evolution of Solidification Texture during Additive Manufacturing Sci. Rep. 2015 5 16446 10.1038/srep16446 26553246
Porter D.A. Easterling K.E. Sherif M.Y. Phase Transformations in Metals and Alloys CRC Press Boca Raton, FL, USA 2022
Chlebus E. Gruber K. Kuźnicka B. Kurzac J. Kurzynowski T. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting Mater. Sci. Eng. A 2015 639 647 655 10.1016/j.msea.2015.05.035
Parimi L.L. Ravi G. Clark D. Attallah M.M. Microstructural and Texture Development in Direct Laser Fabricated IN718 Mater. Charact. 2014 89 102 111 10.1016/j.matchar.2013.12.012
Qi H. Azer M. Ritter A. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718 Metall. Mater. Trans. A 2009 40 2410 2422 10.1007/s11661-009-9949-3
Antonsson T. Fredriksson H. The Effect of Cooling Rate on the Solidification of INCONEL 718 Metall. Mater. Trans. B 2005 36 85 96 10.1007/s11663-005-0009-0
Kumara C. Segerstark A. Hanning F. Dixit N. Joshi S. Moverare J. Nylén P. Microstructure Modelling of Laser Metal Powder Directed Energy Deposition of Alloy 718 Addit. Manuf. 2019 25 357 364 10.1016/j.addma.2018.11.024
Hautfenne C. Nardone S. De Bruycker E. Influence of Heat Treatments and Build Orientation on the Creep Strength of Additive Manufactured IN718 Proceedings of the 4th International ECCC Conference Duesseldorf, Germany 10–14 September 2017
Gao Y. Zhang D. Cao M. Chen R. Feng Z. Poprawe R. Schleifenbaum J.H. Ziegler S. Effect of δ Phase on High Temperature Mechanical Performances of Inconel 718 Fabricated with SLM Process Mater. Sci. Eng. A 2019 767 138327 10.1016/j.msea.2019.138327
Sugahara T. Martinolli K. Reis D.A.P. Moura Neto C. Couto A.A. Piorino Neto F. Barboza M.J.R. Creep Behavior of the Inconel 718 Superalloy Defect Diffus. Forum 2012 326–328 509 514 10.4028/www.scientific.net/DDF.326-328.509
SAE Standards for Mobility Knowledge and Solutions Available online: https://www.sae.org/standards (accessed on 6 January 2025)
Zhou L. Mehta A. McWilliams B. Cho K. Sohn Y. Microstructure, Precipitates and Mechanical Properties of Powder Bed Fused Inconel 718 before and after Heat Treatment J. Mater. Sci. Technol. 2019 35 1153 1164 10.1016/j.jmst.2018.12.006
Kuo Y.L. Nagahari T. Kakehi K. The Effect of Post-Processes on the Microstructure and Creep Properties of Alloy718 Built up by Selective Laser Melting Materials 2018 11 996 10.3390/ma11060996 29895773
Xu Z. Cao L. Zhu Q. Guo C. Li X. Hu X. Yu Z. Creep Property of Inconel 718 Superalloy Produced by Selective Laser Melting Compared to Forging Mater. Sci. Eng. A 2020 794 139947 10.1016/j.msea.2020.139947
Peng J. Gao M. Zhang H. Geng X. Liu X. Pan H. Small Punch Creep Test Reveals the Differences of High-Temperature Creep Behaviours for Laser Powder Bed Fusion and Rolled Inconel 718 Alloys Mater. Sci. Eng. A 2023 886 145698 10.1016/j.msea.2023.145698
Sadek A. Optimization of the Post-Heat Treatment of Additively Manufactured IN718 J. Mater. Eng. Perform. 2024 33 4265 4277 10.1007/s11665-024-09153-8
Bhowmik S. McWilliams B.A. Knezevic M. Effect of Powder Reuse on Tensile, Compressive, and Creep Strength of Inconel 718 Fabricated via Laser Powder Bed Fusion Mater. Charact. 2022 190 112023 10.1016/j.matchar.2022.112023
McLouth T.D. Witkin D.B. Bean G.E. Sitzman S.D. Adams P.M. Lohser J.R. Yang J.M. Zaldivar R.J. Variations in Ambient and Elevated Temperature Mechanical Behavior of IN718 Manufactured by Selective Laser Melting via Process Parameter Control Mater. Sci. Eng. A 2020 780 139184 10.1016/j.msea.2020.139184
Oros T.J. Son K. Hodge A.M. Kassner M.E. The High Temperature Creep and Fracture Behavior of Inconel 718 Produced by Additive Manufacturing Scr. Mater. 2024 251 116208 10.1016/j.scriptamat.2024.116208
Xu Z. Murray J.W. Hyde C.J. Clare A.T. Effect of Post Processing on the Creep Performance of Laser Powder Bed Fused Inconel 718 Addit. Manuf. 2018 24 486 497 10.1016/j.addma.2018.10.027
Zhou F. Hu X. Zhou Y. Xu Z. Guo C. Li G. Li Z. Huang Y. Zhu Q. Effects of Post-Heat Treatment on Anisotropic Mechanical Properties of Laser Additively Manufactured IN718 Mater. Sci. Eng. A 2023 877 145144 10.1016/j.msea.2023.145144
Bhuwal A.S. Pang Y. Maskery I. Ashcroft I. Sun W. Liu T. Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion Adv. Eng. Mater. 2023 2300643 10.1002/adem.202300643
Wang L.Y. Wang Y.C. Zhou Z.J. Wan H.Y. Li C.P. Chen G.F. Zhang G.P. Small Punch Creep Performance of Heterogeneous Microstructure Dominated Inconel 718 Fabricated by Selective Laser Melting Mater. Des. 2020 195 109042 10.1016/j.matdes.2020.109042
Wang Y.C. Wang L.Y. Zhang B. Song Z.M. Luo X.M. Zhang G.P. Building Height-Related Creep Properties of Inconel 718 Superalloy Fabricated by Laser Powder Bed Fusion Mater. Sci. Eng. A 2022 854 143861 10.1016/j.msea.2022.143861
Chizari A.M. Kermanpur A. Foroozmehr E. Rezaeian A. Sadeghi F. Rezaei A. Effect of Solution Treatment on Microstructure and Stress Rupture Properties of Precipitation Hardened IN718 Superalloy Fabricated by Laser Powder-Bed Fusion Process J. Mater. Res. Technol. 2022 21 2296 2308 10.1016/j.jmrt.2022.10.047
Badrossamay M. Rezaei A. Foroozmehr E. Maleki A. Foroozmehr A. Effects of Increasing Powder Layer Thickness on the Microstructure, Mechanical Properties, and Failure Mechanism of IN718 Superalloy Fabricated by Laser Powder Bed Fusion Int. J. Adv. Manuf. Technol. 2022 118 1703 1717 10.1007/s00170-021-07719-7
Wang Q. Ge S. Wu D. Ma H. Kang J. Liu M. Wang T. Narayanaswamy B. Su R. Evolution of Microstructural Characteristics during Creep Behavior of Inconel 718 Alloy Mater. Sci. Eng. A 2022 857 143859 10.1016/j.msea.2022.143859
Popovich V.A. Borisov E.V. Heurtebise V. Riemslag T. Popovich A.A. Sufiiarov V.S. Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing Minerals, Metals and Materials Series Springer International Publishing Berlin/Heidelberg, Germany 2018 Volume Part F12 85 97 9783319725253
Tillmann W. Schaak C. Nellesen J. Schaper M. Aydinöz M.E. Hoyer K.P. Hot Isostatic Pressing of IN718 Components Manufactured by Selective Laser Melting Addit. Manuf. 2017 13 93 102 10.1016/j.addma.2016.11.006
Yeh A.C. Lu K.W. Kuo C.M. Bor H.Y. Wei C.N. Effect of Serrated Grain Boundaries on the Creep Property of Inconel 718 Superalloy Mater. Sci. Eng. A 2011 530 525 529 10.1016/j.msea.2011.10.014
Song B. Dong S. Liu Q. Liao H. Coddet C. Vacuum Heat Treatment of Iron Parts Produced by Selective Laser Melting: Microstructure, Residual Stress and Tensile Behavior Mater. Des. 2014 54 727 733 10.1016/j.matdes.2013.08.085
Ashby M.F. Engineering Materials. 1, An Introduction to Properties, Applications and Design 5th ed. Jones D.R.H. Butterworth-Heinemann Amsterdam, The Netherlands 2019 9780081020517
Ashby M.F. Materials: Engineering, Science, Processing and Design 4th ed. Shercliff H. Cebon D. Butterworth-Heinemann Cambridge, MA, USA 2019 9780081023761
Wu X. Injeti G. Life Prediction of Gas Turbine Materials Gas Turbines Sciyo London, UK 2010 215 282
Wadsworth J. Ruano O.A. Sherby O.D. Denuded Zones, Diffusional Creep, and Grain Boundary Sliding Metall. Mater. Trans. A 2002 33 219 229 10.1007/s11661-002-0084-7
Ruano O.A. Wadsworth J. Sherby O.D. Low Stress Creep of α-Zr at Intermediate Temperatures Mater. Sci. Eng. 1986 84 L1 L6 10.1016/0025-5416(86)90245-4
Mittemeijer E.J. Fundamentals of Materials Science the Microstructure-Property Relationship Using Metals as Model Systems 2nd ed. Springer Berlin/Heidelberg, Germany 2021
Liu F. Cocks A.C.F. Tarleton E. Dislocation Climb Driven by Lattice Diffusion and Core Diffusion J. Mech. Phys. Solids 2023 176 105300 10.1016/j.jmps.2023.105300
Rojas-Ulloa C. Morch H. Tuninetti V. Tchoufang Tchuindjang J. Pensis O. Di Giovanni A. Mertens A. Duchêne L. Habraken A.M. Microstructure Evolution of Incoloy 800H in Industrial Environment and Correlation with Creep Mechanisms from Literature Mater. High Temp. 2024 41 311 321 10.1080/09603409.2024.2342602
Kassner M.E. Hayes T.A. Creep Cavitation in Metals Int. J. Plast. 2003 19 1715 1748 10.1016/S0749-6419(02)00111-0
Sandström R. Basic Modeling and Theory of Creep of Metallic Materials Springer Berlin/Heidelberg, Germany 2024
Frost H. Ashby M. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics Material Science, Engineering Franklin Book Company Elkins Park, PA, USA 1982
Ghoniem N.M. Matthews J.R. Amadeo R.J. A Dislocation Model for Creep in Engineering Materials Res. Mech. 1990 29 197 219
Riedlsperger F. Wojcik T. Buzolin R. Zuderstorfer G. Speicher M. Sommitsch C. Sonderegger B. Microstructural Insights into Creep of Ni-Based Alloy 617 at 700 °C Provided by Electron Microscopy and Modelling Mater. Charact. 2023 198 112720 10.1016/j.matchar.2023.112720
Riedlsperger F. Krenmayr B. Zuderstorfer G. Fercher B. Niederl B. Schmid J. Sonderegger B. Application of an Advanced Mean-Field Dislocation Creep Model to P91 for Calculation of Creep Curves and Time-to-Rupture Diagrams Materialia 2020 12 100760 10.1016/j.mtla.2020.100760
Yadav S.D. Sonderegger B. Stracey M. Poletti C. Modelling the Creep Behaviour of Tempered Martensitic Steel Based on a Hybrid Approach Mater. Sci. Eng. A 2016 662 330 341 10.1016/j.msea.2016.03.071
Orowan E. Problems of Plastic Gliding Proc. Phys. Soc. 1940 52 8 10.1088/0959-5309/52/1/303
Wu S. Song H.Y. Peng H.Z. Hodgson P.D. Wang H. Wu X.H. Zhu Y.M. Lam M.C. Huang A.J. A Microstructure-Based Creep Model for Additively Manufactured Nickel-Based Superalloys Acta Mater. 2022 224 117528 10.1016/j.actamat.2021.117528
Morch H. Thermomechanical Modelling of the Creep-Fatigue Behaviour and Damage of Nickel-Alloy Receiver Tubes Used in Concentrated Solar Power Plants University of Liège Liège, Belgium 2022
Rabotnov Y.N. A Mechanism of the Long Term Fracture Izdat. AN SSSR Moscow, Russia 1959 (In Russian)
Vilanova M. Garciandia F. Sainz S. Jorge-Badiola D. Guraya T. San Sebastian M. The Limit of Hot Isostatic Pressing for Healing Cracks Present in an Additively Manufactured Nickel Superalloy J. Mater. Process. Technol. 2022 300 117398 10.1016/j.jmatprotec.2021.117398
Lesyk D.A. Martinez S. Mordyuk B.N. Pedash O.O. Dzhemelinskyi V.V. Lamikiz A. Comparison of Effects of Ultrasonic and Shot Peening Treatments on Surface Properties of L-PBF-Manufactured Superalloy Subjected to HIP Combined with Heat Treatments Post-Processing Techniques for Additive Manufacturing CRC Press Boca Raton, FL, USA 2023 207 243
Li Y. Podaný P. Koukolíková M. Džugan J. Krajňák T. Veselý J. Raghavan S. Effect of Heat Treatment on Creep Deformation and Fracture Properties for a Coarse-Grained Inconel 718 Manufactured by Directed Energy Deposition Materials 2023 16 1377 10.3390/ma16041377 36837007
Pignatelli A. Application of the Hot Isostatic Pressing on Inconel 738 Above Its Solidus Temperature for Microstructural Enhancement Polytechnic of Turin Turin, Italy 2023
Rogers B. Microstructure Development in Direct Metal Laser Sintered Inconel Alloy 718 Arizona State University Tempe, AZ, USA 2017
Ma T. Zhang G.P. Tan P. Zhang B. Effects of Homogenization Temperature on Creep Performance of Laser Powder Bed Fusion-Fabricated Inconel 718 at 650 °C Mater. Sci. Eng. A 2022 853 143794 10.1016/j.msea.2022.143794
Qin S. Herzog S. Kaletsch A. Broeckmann C. Effects of HIP on Microstructure and Creep Properties of Inconel 718 Fabricated by Laser Powder-Bed Fusion Proceedings of the Euro PM 2019 Congress & Exhibition, Proceedings: EuroPM Maastricht, The Netherlands 13–16 October 2019 13–16 October
Ma T. Zhang B. Wang L.Y. Song Z.M. Luo X.M. Liu C.S. Zhang G.P. Anisotropy of Small Punch Creep Performance of Selective Laser Melted GH4169 at 650 °C Mater. Sci. Eng. A 2021 806 140608 10.1016/j.msea.2020.140608
Shassere B. Greeley D. Okello A. Kirka M. Nandwana P. Dehoff R. Correlation of Microstructure to Creep Response of Hot Isostatically Pressed and Aged Electron Beam Melted Inconel 718 Metall. Mater. Trans. A 2018 49 5107 5117 10.1007/s11661-018-4812-z
Sanchez S. Rengasamy D. Hyde C.J. Figueredo G.P. Rothwell B. Machine Learning to Determine the Main Factors Affecting Creep Rates in Laser Powder Bed Fusion J. Intell. Manuf. 2021 32 2353 2373 10.1007/s10845-021-01785-0 34720456
Zhao Y. Ma Z. Yu L. Dong J. Liu Y. The Simultaneous Improvements of Strength and Ductility in Additive Manufactured Ni-Based Superalloy via Controlling Cellular Subgrain Microstructure J. Mater. Sci. Technol. 2021 68 184 190 10.1016/j.jmst.2020.07.011
Zhang S. Lin X. Wang L. Yu X. Hu Y. Yang H. Lei L. Huang W. Strengthening Mechanisms in Selective Laser-Melted Inconel718 Superalloy Mater. Sci. Eng. A 2021 812 141145 10.1016/j.msea.2021.141145
Special Metals INCONEL ® Alloy 718 2007 Available online: https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf (accessed on 1 September 2007)
Dai S. Zhu J. Yan X. Wu S. Liu Y. Gao X. Fraser H. Hodgson P. Zhu Y. Heilmaier M. et al. Unique Yttria Nanoparticle Strengthening in an Inconel 718 Superalloy Fabricated by Additive Manufacturing Adv. Mater. Technol. 2024 9 2301421 10.1002/admt.202301421
Kakehi K. Banoth S. Kuo Y.L. Hayashi S. Effect of Yttrium Addition on Creep Properties of a Ni-Base Superalloy Built up by Selective Laser Melting Scr. Mater. 2020 183 71 74 10.1016/j.scriptamat.2020.03.014
Wang L. Yang F. Gui T. Huang W. Lin X. Huang W. Improved Creep Properties of Inconel 718 Fabricated by Selective Laser Melting from Boron-Phosphorus Interaction Mater. Res. Lett. 2024 12 661 667 10.1080/21663831.2024.2368076