Paper published on a website (Scientific congresses and symposiums)
SAMO: A Sequential Pattern Mining Model for Evaluating Road Criticality in Urban Traffic Networks
Bachir, Nourhan; Zaki, Chamseddine; Harb, Hassan et al.
20242024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall)
Editorial reviewed
 

Files


Full Text
Updated_Paper_for_conf.pdf
Author preprint (1.75 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Disciplines :
Computer science
DOI :
10.1109/VTC2024-Fall63153.2024.10757675
Author, co-author :
Bachir, Nourhan  ;  Université de Liège - ULiège > Sphères
Zaki, Chamseddine;  American University of Middle East
Harb, Hassan;  American University of Middle East
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY)
Language :
English
Title :
SAMO: A Sequential Pattern Mining Model for Evaluating Road Criticality in Urban Traffic Networks
Original title :
[en] VeTraSPM: Novel Vehicle Trajectory Data Sequential Pattern Mining Algorithm for Link Criticality Analysis
Publication date :
28 November 2024
Event name :
2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall)
Event place :
United States
Event date :
7 October, 2024
Audience :
International
Peer reviewed :
Editorial reviewed
Source :
Available on ORBi :
since 10 December 2024

Statistics


Number of views
10 (5 by ULiège)
Number of downloads
1 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi