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Abstract—This paper proposed a Sequential pAttern Mining
mOdel (SAMO) for discovering critical links and evaluating
road importance in transportation systems. SAMO introduces
novel criticality indices derived from association rule mining
and data analysis of vehicular trajectory data. These indices are
designed to assess the criticality of road links within a network
by leveraging mining frequent patterns and extract meaningful
associations from the trajectory data. SAMO prioritizes links
that feature prominently in frequent trajectory patterns, with
additional weight given to patterns with high confidence levels.
We evaluated the performance of our indices within machine
learning prediction models alongside with the traditional indices
used in the literature. Our results demonstrate that integrating
our proposed indices improves prediction accuracy across various
models, with the indices consistently ranking among the top
features. This indicates the promising potential of our indices for
evaluating and assessing critical links in transportation networks.

Index Terms—Criticality Indices, Association Rule Mining,
Vehicular Trajectory Data, Machine Learning, Traffic Flow
Analysis

I. INTRODUCTION

With the ever-growing complexity of urban traffic networks,
the need for effective methods to assess the criticality of road
links has become increasingly paramount. Understanding the
criticality of specific links is fundamental for urban planners,
transportation engineers, and emergency responders in ensur-
ing the resilience and efficiency of transportation systems.
Critical links are those of utmost importance, whose blockage
or disruption could significantly impact the entire network,
potentially leading to severe congestion, route diversions, or
even widespread panic.

In the literature, one can find a significant number of
indices and measures that have been proposed to evaluate
the criticality of road links. Betweenness Centrality (BC)
stands out as one of the most commonly studied indices [1],
[2], [3], [4]. Researchers have investigated both unweighted
and weighted forms of the BC index, incorporating different
weight types such as traffic flow, link length, travel-time, and
congestion [2], [3]. Some studies have combined BC with
other non-graphical indices, such as link length, clustering
coefficient, degree, and road network connectivity [1], [5], [4].
Conversely, certain studies did not consider BC at all, focusing
instead on indices like flow and demand [6], [7], [8].

Our literature review indicates a lack of research on ap-
plying sequential data mining algorithms for critical link
analysis in vehicle trajectory data. While previous studies have
utilized these techniques to analyze taxi movement patterns
[9], [10] and public transportation movement patterns [11],
[12], they have not focused on identifying critical links prone
to disruptions or their impact on the transportation network.

This paper presents novel criticality indices derived from
association rule mining and data analysis of vehicular tra-
jectory data. These indices aim to provide a comprehensive
evaluation of link criticality within the context of the entire
network. The underlying concept is to assign higher criticality
values to links that are frequently traversed in common vehicle
movement patterns. Moreover, links found in longer and more
confidently identified patterns are ranked higher, indicating
their increased importance in the network. Our new model
is called SAMO and it is specifically designed for mining
frequent trajectory patterns and extracting meaningful associ-
ations from the trajectory data. By incorporating both support
and confidence metrics from association rule mining, SAMO
can better evaluate a link importance and its connections to
critical patterns. The performance of the proposed indices has
been evaluated through comparative analysis with traditional
indices commonly used in the literature, employing various
machine learning models. The integration of these new indices
into the models has yielded improved results, with the indices
emerging as top features across different models. This under-
scores their potential for effectively evaluating and prioritizing
critical links in urban traffic networks.

The rest of the paper is organized as follows: Section II
outlines the methodology employed in this study, including
the data collection and analysis techniques. Section III presents
the results and analysis, demonstrating the effectiveness of the
proposed indices. Finally, Section IV concludes the paper and
suggests directions for future research.

II. METHODOLOGY

This section outlines the methodology used to mine se-
quential patterns from vehicular trajectory data and determine
the most commonly traversed road patterns. The methodology
introduces a new version of Apriori algorithm adapted to
the unique characteristics of trajectory data. The main idea
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behind this new version is to mine sequential patterns and
identify the longest and most commonly used road patterns;
more a link appears in such patterns, more important it
will considered. Additionally, longer frequent patterns signify
higher link criticality. We use the ”support” and ”confidence”
metrics in association rules to measure the likelihood of a link
being part of a pattern, thus connecting frequent links and
determining their criticality. We combine these metrics into a
single index called the ”Sequential Impact Score” (SIS).

A. Preliminary Definitions

• Trajectory Sequence (Tr): V = {V1, V2, ..., Vn} repre-
sents a group of vehicles that travel for a certain period
in a given geographical area. Tri = {ex, ey, ..., en} rep-
resents the trajectory sequence of vehicle i, and TrDB
represents the set of sequences of all vehicles.

• Sequence length: The length of a sequence is the number
of all links within the sequence, denoted as length(Trk).

• Sub-sequence: Tri = {ex, ey, . . . , en}, the trajectory se-
quence of vehicle i, is a sub-sequence of the trajectory se-
quence of vehicle j, Trj = {. . . , ex, ey, . . . , en, em, . . .},
where length(Tri) ≤ length(Trj) and Trj contains the
whole sequence of Tri in the same order.

• Movement pattern (Mp): A movement pattern M rep-
resents a specific pattern (sub-sequence) to be detected
in the trajectory data, denoted as M = {ex, ey} or
M ′ = {ez}.

• Movement pattern order: The order of a movement pat-
tern is the length of the respective sequence, denoted as
order(M).

• Movement rule: A movement rule R is defined as an as-
sociation rule between two movement patterns expressed
as M → M ′.

• Support: The support of movement pattern M is the
number of appearances of this movement pattern as a
sub-sequence in all trajectory sequences S. The support
of the rule R = M → M ′ is the support of movement
pattern MM ′ in the mobile database.

• Confidence: The confidence of movement
rule R is defined as confidence(R) =
support(MM ′)/support(M).

• Frequent Movement Pattern Set (FqM): For a given
support threshold minsup, a frequent movement pattern
is a pattern whose support is not lower than minsup. A
Frequent Movement Pattern Set denoted as FqMk is the
set of movement patterns of order k whose support is not
lower than the minsup.

• Confident Rules Set (CR): For a given confidence thresh-
old minconf, a confident rule is a association rule whose
confidence is greater than or equal to minconf.

B. SAMO Description

An interesting approach for discovering critical links in
transportation networks involves extracting meaningful pat-
terns from vehicle movement sequential data. Existing al-
gorithms for sequence pattern discovery, such as association
rules algorithms like Apriori, suffer from low accuracy when

applied to vehicle trajectory data. To address this issue, this
paper presents a new vehicle movement sequential data mining
model for sequence pattern mining abbreviated as SAMO based
on the vehicle trajectory data structure (Figure 1).

1) Vertical Projection of Trajectory Data: In order to
efficiently generate frequent rules with high confidence, a
vertical projection of trajectory data is performed. Using this
approach:

• The database is queried only once, and each unit move-
ment’s presence in sequences is projected into one list
called Trajectory Identity List (TIL).

• To explore the support of combinations, it is enough then
to query these lists.

2) New Definitions: New definitions and concepts are pro-
posed, including the concept of outgoing edges and the use
of a Positioning Table (PT) to capture the order and possible
recurrence of unit movements in trajectory sequences.

• Outgoing Edges (Ox): This defines a set of edges
that can follow a specific edge. For instance, if edge
x can be followed by edges y1, y2, . . . , yn, then Ox =
{y1, y2, . . . , yn}. This property significantly reduces the
search space and complexity when generating frequent
sequences.

• Positioning Table (PT): This is a data structure used to
store and manage the positions of occurrence of move-
ment patterns within trajectory sequences. It consists
of Ordered-Positioning Lists (OPLs) for each sequence
where a particular pattern occurs. This allows for efficient
querying and manipulation of pattern occurrences.

• Ordered-Positioning List (OPL): An OPL records the
positions of occurrence of a movement pattern within
a specific trajectory sequence. It maintains the order
of occurrences, enabling accurate tracking of pattern
occurrences and extensions.

3) Position Tables Extension Approach (PT-Ext): The PT-
Ext algorithm is used to extend the positioning tables of
movement patterns. It works by examining each row in the
PT of a given pattern X and identifying sequences where X
occurs. Then, it checks if an outgoing edge y follows the last
occurrence of X in each sequence. If these conditions are met,
it extends the pattern X by y and updates the corresponding
OPLs in the extended PT. This ensures accurate tracking of
pattern extensions while considering the order and recurrence
of patterns.

C. SAMO Steps

SAMO employs a path Positioning Table (PT) for data
storage, mining, and pattern expansion. The model includes
steps for generating outgoing edges, constructing positioning
tables, mining frequent movement patterns, extending patterns
using PT-Ext, and pruning unnecessary patterns.

D. Position Tables Extension Approach (PT-Ext)

1) Generate Outgoing Edges: Explore the graphical rep-
resentation of the map and determine the set of outgoing
edges for each edge. This step establishes the potential
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Fig. 1. SAMO

subsequent edges for each edge in the trajectory net-
work.

2) Construct Positioning Tables (PTs): Scan the vehicle
driving trajectories database to construct PTs for move-
ment patterns of order k. These PTs store the positions
of occurrence of each pattern within the trajectory se-
quences.

3) Prune to FqMk: Prune the generated PTs to identify
the set of frequent movement patterns FqMk of order k.
This step eliminates non-frequent patterns and focuses
on patterns with sufficient support in the dataset.

4) Extend using PT-Ext: Extend the frequent patterns
FqMk into order k+1 using the PT-Ext algorithm. This
involves identifying sequences where the last pattern in
FqMk is followed by an outgoing edge and updating
the PTs accordingly.

5) Prune to FqM(k+1): Prune the extended PTs to gen-
erate the set of frequent movement patterns FqM(k+1)

of order k + 1. This step further refines the patterns by
considering their extensions and support in the dataset.

A final step is then applied Generate Confident Rules
Set in order to form rules meeting the minimum confidence
threshold from Frequent Movement Pattern Sets.

E. Indices Calculation

Once all the frequent movement patterns and confident rules
are generated, we calculate each edge’s indices as follows: let
n denote the order of the highest non-empty set of frequent
movement patterns with a specific movement pattern M under
examination. Then, let SFI(M) (defined in equation (1)
be the Support Frequency Score of movement pattern M
indicating the index calculated using the support metric, and
CIS(M) (defined in equation (2) be the Confidence Impact
Score of pattern M indicating the index calculated using the
confidence metric as follows:

SFI(M) = 1 · x1 + (i) · xi + . . .+ (n) · xn (1)

CIS(M) = 1 · y1 + (i) · yi + . . .+ (n) · xn (2)

where:

• The terms 1 · x1 and 1 · y1 signify the contribution of
occurrences of pattern M in the first-order set of frequent
movement patterns (FqM1) and the first-order set of
confident rule (CR1) respectively.

• The terms (i) ·xi and (i) ·yi encapsulates the importance
of pattern M in the ith order set of frequent movement
patterns (FqMi) and confident rules (CRi) respectively.
Here, the factor i is utilized to weigh patterns by their
order, assigning higher importance to appearances in
higher-order patterns.

• Similarly, the terms (n) ·xn and (n) ·yn take into account
the occurrences of pattern M in the last non-empty set of
frequent movement patterns (FqMn) and confident rules
(CRn), with a weight proportional to n.

The Sequential Impact Score of movement pattern M is
defined in the following equation (3):

SIS(M) = SFI(M) + CIS(M) (3)

Essentially, it aggregates the occurrences of pattern M
across various orders, with each order weighted according to
its significance. This approach ensures that the most frequent
patterns and confident rules are identified, and higher impor-
tance is assigned to links based on their consistent presence in
higher-order frequent movement patterns and confident rules.
These indices offer a thorough evaluation of the sustained
importance of a movement pattern across different levels of
sequence complexity.

By calculating the Sequential Impact Scores for each move-
ment pattern, we can gain valuable insights into patterns that
consistently show significance across different orders of fre-
quent movement patterns and confident rules. This information
is crucial for decision-making and understanding the evolving
relevance of these patterns.
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III. RESULTS

In this section, we present our experimentation and evalu-
ation of our proposed model. We compared SAMO with the
model proposed in [13]. Then, we integrated both models into
various machine learning (ML) prediction models. The evalu-
ation focused on predicting the criticality of links using both
static and dynamic features. We compared model performance
with and without the new indices and analyzed their rankings
within different models.

A. SUMO Scenarios and Data Generation
In our study, we decided to make use of LuST [14] and

MoST scenarios [15] based on the cities of Luxembourg
and Monaco respectively. We ran the SUMO simulations to
generate dynamic and static indices. The dynamic features
were obtained through SUMO simulations, which provided
specific indices for each edge (link). The assessment of the
adverse impact following link disruptions in microscopic simu-
lations varies across different studies depending on the specific
use case. In order to evaluate link criticality, we conducted
extensive simulations by systematically removing one link at a
time and recording the change in total round trip time (TRTT).
The magnitude of this change indicates the link’s importance,
i.e.criticality.

B. Parameters, Values, and Justification
In our model, the frequency of pattern occurrences serves

as a quantitative measure of the prevalence of specific move-
ment patterns within the dataset. Counting the occurrences
of patterns provides us with a foundation for prioritizing
patterns for further analysis. By focusing on patterns with
higher occurrence frequencies, we refine our understanding of
dominant vehicular behaviors while maintaining a data-driven
perspective. To do so, we have identified two key parameters,
each with specific values and justifications. These parameters
play a crucial role in fine-tuning our approach to extract
meaningful patterns and relationships from vehicle trajectory
data.

1) Minimum Support Threshold: This threshold serves
as a fundamental parameter in our methodology. It deter-
mines the threshold frequency a pattern must satisfy to be
considered for further analysis. To comprehensively explore
patterns across various popularity orders, we have chosen
a spectrum of threshold values: 3%, 5%, 8%, 10%, and
12%, whose respective minimum number of occurrences is
(6, 465), (10, 776), (17, 242), (21, 552), and (25, 863), respec-
tively. This range enables us to strike a balance between
capturing rare patterns that might offer unique insights and
identifying frequently occurring patterns that could indicate
important trends.

As the minimum support threshold is manipulated, a no-
table phenomenon arises: the frequency of identified patterns
changes. Higher thresholds lead to a decrease in the number of
identified patterns, as patterns must surpass a higher popularity
bar to be considered. This relationship is critical as it ensures
that the method remains sensitive to the minimum support
threshold while carefully curating patterns with substantive
implications.

2) Minimum Confidence Threshold: This threshold param-
eter is central also for our criticality link analysis process.
It quantifies the strength of the rules derived from patterns,
indicating the reliability of the associations between different
trajectory events. The confidence threshold is expressed as
a variable fraction, allowing us to adapt its value accord-
ing to the characteristics of the dataset under investigation.
This adaptability ensures that the rules generated accurately
reflect the inherent uncertainty present in real-world vehicle
movement data. In our work, we explored different confidence
values: 0.6, 0.7, 0.8, 0.9, and 1. As this value increases only
edges in more “confident” rules and corresponding patterns
are assigned higher weight.

Indeed, selecting the minimum support and confidence
thresholds requires balancing less common patterns and ex-
cluding exceedingly frequent ones. Striking this balance en-
sures that we capture both the long-tail patterns that might
provide unique insights and the highly frequent patterns that
may underscore critical vehicular interactions. Studying differ-
ent minimum support thresholds, we observed a variation in
the max order reached. As the threshold increases, the max
order reached decreases. Since the confidence threshold is
also central in our algorithm, we studied the variation of the
confident rule (pattern) counts generated as different levels
across different minimum support and confidence thresholds.
In order to visualize this variation we used a heatmap shown
in Figure 2.

In our experimentation, we use 5% and 0.8 as our minimum
support and confidence thresholds, respectively. These mini-
mum support and confidence thresholds ensure that we are
exploring a sufficient amount of frequent movement patterns
and a sufficient number of confident movement patterns are
generated.

C. SAMO Results
To assess our model performance, we initially compared

the execution time of SAMO with an optimized version of
Apriori, a widely-used method in the literature. We enhanced
the efficiency of this implementation by utilizing the set of
outgoing edges during initialization. However, our findings,
illustrated in Figure 3, reveal a significant disparity in ex-
ecution times. Notably, as the minimum support threshold
decreases and the number of filtered edges diminishes, the
existing implementation struggles to cope with the growing
complexity of combinations, whereas SAMO demonstrates
robust performance even under these challenging conditions.

When visualizing SFI , as depicted in Figure 4, we observe
the most frequently traveled edges and sequences, with a
heightened emphasis on edges within frequent sequences. This
is why it highlights the primary roads in the city center while
also capturing the popularity of highways. Contrarily, CIS,
shown in Figure 5, reflects the frequent edges that are part of
the most confident patterns. With a minimum confidence level
of 0.8, there is an 80% probability of accessing these edges
within a frequent pattern. Consequently, it prioritizes highways
and connecting edges. Notably, links in the city center that
are highlighted by FqM scores receive a lower score in CM
because there are more alternative routes in the city center.
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Fig. 2. Confident Rule Counts for Different Orders

Fig. 3. SAMO Execution Time vs. Enhanced Apriori Algorithm

D. Additional Indices for Prediction Model

Beside the proposed indices, we utilized a set of static and
dynamic indices derived from the SUMO simulation output.
These indices provide valuable insights into various aspects
of traffic flow and network characteristics. Below is a concise
explanation of the key indices used:

• Static Indices: Length, Width, Max Speed, Cost, EBC,
Type.

• Dynamic Indices: Support, Relative Support, Sampled
Seconds (in sec.), Travel Time (in sec.), Overlap Travel
Time (in sec.), Density (in #veh/km), Occupancy (in %),

Speed (in m/s), Speed Relative.
The above indices, along with the proposed indices, con-

tribute to a comprehensive understanding of traffic dynamics
and network behavior, enhancing the accuracy of criticality
assessment and prediction model performance evaluation.

E. Model Results

We employed the following machine learning models for
prediction: Random Forest, Gradient Boosting, Linear Re-
gression, K-Nearest Neighbors, Ridge Regression, MLP, Sup-
port Vector Regression, Lasso Regression, Decision Tree,
and Gaussian Process Regression. The mean squared error
(MSE) results for each model, both with and without the
proposed indices, are presented in Table I. The results show
that integrating the proposed indices into the prediction models
consistently improves their performance. The reduction in
MSE across various models indicates that the new indices
provide valuable information about link criticality, leading to
more accurate predictions.

F. Model Top Features Results

We further analyzed the performance of models trained on
top features. Table II presents the updated rankings of CIS,
SFI, and SIS for selected models within the top features. The
updated rankings reveal that our proposed indices, particularly
CIS, continue to demonstrate significant importance across dif-
ferent machine learning models. CIS’s high ranking in several
models highlights its robustness in capturing link criticality
effectively. The varying performance of SFI and SIS across
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Fig. 4. SFI Score Weighted Links on city of Luxembourg

Fig. 5. CIS Score Weighted Links on city of Luxembourg

models suggests their sensitivity to specific model architec-
tures and feature selections. Particularly, Random Forest and
Gradient Boosting emerged as the best-performing models,
with the lowest MSE values both before and after the inclusion
of the proposed indices. These models also placed CIS in the
4th and 2nd positions respectively, reflecting the index’s high
relevance and contribution to the model’s predictive accuracy.

G. Analysis and Insights

The inclusion of the proposed indices led to significant
improvements in model performance, as evidenced by the
reduction in MSE values across all models. This indicates that
the proposed indices capture critical aspects of link importance
that are not fully represented by traditional features. The

analysis of top features in various models further highlights
the significance of our proposed indices:

• CIS ranked within the top 5 features in several models,
demonstrating its robustness in capturing link criticality.

• SFI and SIS showed more variability in their rankings,
indicating that their effectiveness might depend on the
specific model and context. For instance, SFI did not
appear in the top features for some models but ranked
8th and 18th in others, showing moderate importance.

The most frequently top-ranked features alongside our
indices include occupancy, density, ebc (edge betweenness
centrality), and various traffic volume measures. This suggests
that both dynamic traffic conditions and static network char-
acteristics are crucial for accurately predicting link criticality.
Overall, our proposed indices provide a valuable addition to
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TABLE I
MSE RESULTS FOR MACHINE LEARNING MODELS.

Model MSE without Indices MSE with Indices MSE with Indices and Top Features
Random Forest 0.4238 0.3897 0.3782

Gradient Boosting 0.4849 0.4143 0.3977
K-Nearest Neighbors 0.4896 0.4258 N/A

Linear Regression 0.5116 0.4462 0.4499
Ridge Regression 0.5172 0.4565 0.4501

MLP 0.5732 0.4663 N/A
Decision Tree 0.8654 0.4665 0.4665

Support Vector Regression 0.5068 0.4912 N/A
Lasso Regression 0.7609 0.5698 0.5683

Gaussian Process Regression 170.1954 138.9047 N/A

TABLE II
RANKINGS OF PROPOSED INDICES IN TOP FEATURES

Model CIS SFI SIS
Random Forest 4th 18th 27th

Gradient Boosting 2nd N/A N/A
Linear Regression 23rd 22nd 39th
Ridge Regression 12th 24th 27th

Decision Tree 3rd 8th 36th
Lasso Regression 4th N/A N/A

traditional metrics, offering a more comprehensive evaluation
of link criticality. The improvement in prediction accuracy
and the consistent presence of our indices among top features
across different models underscore their potential for practical
applications in traffic management and network optimization.

IV. CONCLUSION

In this paper, we proposed novel criticality indices based on
association rule mining and data mining of vehicular trajectory
data. Our indices aim to evaluate the criticality of links
(roads) within a network by considering their frequency and
confidence in vehicle trajectory patterns. Through extensive
experiments using various machine learning (ML) prediction
models, we demonstrated the effectiveness of our proposed
indices in predicting link criticality. Integration of the indices
into the models consistently led to improvements in prediction
accuracy, as evidenced by the reduction in mean squared error
(MSE) values across different models. Moreover, the analysis
of top features within the models revealed the significant
relevance of our proposed indices, particularly the Criticality
Impact Score (CIS), which consistently ranked among the
top features across various ML models. The high ranking
of CIS indicates its robustness in capturing link criticality
effectively. Furthermore, our indices complement traditional
static and dynamic features used in traffic analysis, pro-
viding a more comprehensive assessment of link criticality.
By considering both dynamic traffic conditions and static
network characteristics, our indices offer valuable insights for
traffic management and network optimization. Additionally,
the comparative analysis showcased the robustness and effi-
ciency of our SAMO model in handling large-scale trajectory
datasets. SAMO outperformed the existing implementation
of Apriori, particularly when the minimum support threshold
decreased, indicating its suitability for trajectory mining tasks

in transportation research. The results of our study underscore
the potential of our proposed indices for practical applications
in transportation engineering and urban planning.
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