Article (Scientific journals)
Efficient Representative Volume Element of a Matrix–Precipitate Microstructure—Application on AlSi10Mg Alloy
Bouffioux, Chantal; Papeleux, Luc; Calvat, Mathieu et al.
2024In Metals, 14 (11), p. 1244
Peer Reviewed verified by ORBi
 

Files


Full Text
Bouffioux_metals-14-01244.pdf
Publisher postprint (8.49 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Representative Volume Element; 2.5D numerical model; additive manufacturing; microstructure; hardening behavior; AlSi10Mg
Abstract :
[en] In finite element models (FEMs), two- or three-dimensional Representative Volume Elements (RVEs) based on a statistical distribution of particles in a matrix can predict mechanical material properties. This article studies an alternative to 3D RVEs with a 2.5D RVE approach defined by a one-plane layer of 3D elements to model the material behavior. This 2.5D RVE relies on springs applied in the out-of-plane direction to constrain the two lateral deformations to be compatible, with the goal of achieving the isotropy of the studied material. The method is experimentally validated by the prediction of the tensile stress–strain curve of a bi-phasic microstructure of the AlSi10Mg alloy. Produced by additive manufacturing, the sample material becomes isotropic after friction stir processing post treatment. If a classical plane strain 2D RVE simulation is clearly too stiff compared to the experiment, the predictions of the stress–strain curves based on 2.5D RVE, 2D RVE with no transversal constraint (called 2D free RVE), and 3D RVE simulations are close to the experiments. The local stress fields within a 2.5D RVE present an interesting similarity with 3D RVE local fields, but differences with the 2D free RVE local results. Since a 2.5D RVE simplifies one spatial dimension, the simulations with this model are faster than the 3D RVE (factor 2580 in CPU or taking into account an optimal parallel computation, a factor 417 in real time). Such a discrepancy can affect the FEM2 multi-scale simulations or the time required to train a neural network, enhancing the interest in a 2.5D RVE model.
Disciplines :
Materials science & engineering
Author, co-author :
Bouffioux, Chantal  ;  Université de Liège - ULiège > Département ArGEnCo
Papeleux, Luc  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Calvat, Mathieu;  Materials Science and Engineering, University of Illinois, 201 Science and Engineering Building, 1304 W. Green St. MC 246, Urbana-Champaign, IL 61801, USA
Tran, Hoang Son ;  Université de Liège - ULiège > Département ArGEnCo
Chen, Fan  ;  Université de Liège - ULiège > Urban and Environmental Engineering
Ponthot, Jean-Philippe  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Duchene, Laurent  ;  Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Habraken, Anne  ;  Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Language :
English
Title :
Efficient Representative Volume Element of a Matrix–Precipitate Microstructure—Application on AlSi10Mg Alloy
Publication date :
01 November 2024
Journal title :
Metals
eISSN :
2075-4701
Publisher :
MDPI AG
Volume :
14
Issue :
11
Pages :
1244
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 04 December 2024

Statistics


Number of views
7 (2 by ULiège)
Number of downloads
4 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi