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Abstract: In finite element models (FEMs), two- or three-dimensional Representative Volume El-
ements (RVEs) based on a statistical distribution of particles in a matrix can predict mechanical
material properties. This article studies an alternative to 3D RVEs with a 2.5D RVE approach defined
by a one-plane layer of 3D elements to model the material behavior. This 2.5D RVE relies on springs
applied in the out-of-plane direction to constrain the two lateral deformations to be compatible, with
the goal of achieving the isotropy of the studied material. The method is experimentally validated
by the prediction of the tensile stress–strain curve of a bi-phasic microstructure of the AlSi10Mg
alloy. Produced by additive manufacturing, the sample material becomes isotropic after friction stir
processing post treatment. If a classical plane strain 2D RVE simulation is clearly too stiff compared
to the experiment, the predictions of the stress–strain curves based on 2.5D RVE, 2D RVE with no
transversal constraint (called 2D free RVE), and 3D RVE simulations are close to the experiments. The
local stress fields within a 2.5D RVE present an interesting similarity with 3D RVE local fields, but
differences with the 2D free RVE local results. Since a 2.5D RVE simplifies one spatial dimension, the
simulations with this model are faster than the 3D RVE (factor 2580 in CPU or taking into account
an optimal parallel computation, a factor 417 in real time). Such a discrepancy can affect the FEM2

multi-scale simulations or the time required to train a neural network, enhancing the interest in a
2.5D RVE model.

Keywords: Representative Volume Element; 2.5D numerical model; AlSi10Mg; additive manufacturing;
microstructure; hardening behavior

1. Introduction

The 2D or 3D finite element simulations of Representative Volume Elements (RVEs) are
increasingly popular as they help the researchers to understand the strength mechanisms
within the loaded materials. A careful design of the RVE is crucial to ensure an accurate
and reliable representation of material microstructures, capable of effectively predicting
macro-scale properties, as demonstrated by significant validation with experimental data.

As pointed in reference [1], the RVE methodology encompasses two primary ap-
proaches: statistically modeling the microstructure as a virtual representative volume [2],
or discretizing a statically representative real volume [3]. Based on microstructure fea-
tures such as spherical particles, randomly distributed needle-like precipitates in a matrix,
isotropic polycrystalline material, or strong anisotropy due to texture or grain shape, the
choice between 2D and 3D RVEs is required to investigate the mechanical response under
various loading conditions. The main focus of this work is to explore an alternative to 3D
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RVEs, also called 2.5D RVEs, in order to save the CPU time, particularly in the context of
isotropic materials featuring a soft matrix containing hard particles. The 2.5D RVE approach
is defined by a one-plane layer of 3D elements and relies on specific constraints in the
out-of-plane direction to model any isotropic material presenting a matrix with particles.
Subsequently, this introduction discusses the range of simulation goals achievable with
RVEs, exemplified through several metal-based examples.

The quality of RVE results explains their use in virtual material and process design, as
RVEs can predict material properties based on a given microstructure. They are now inte-
grated into materials engineering to enhance material design. For instance, Maity et al. [3]
use 2D RVEs to understand the effect of the addition of Mn in the Al-12.6 Si alloy on
bulk hardness, yield stress, and fracture propagation. Indeed, Mn presence varies the
microstructure morphology and the micromechanical response of the alloy. Using 3D RVEs,
Shalimov and Tashkinov [4] demonstrate that for cell porous gold crystals, the random
morphology can play an as important role in the mechanical tensile curve as the pore
fraction. Akbari et al. [5] study the link between the yield surface of a polycrystalline brittle
material and its microstructure by using 2D RVEs, including cohesive elements to model
the grain interface behavior. Sun and Jain [6] simulate the AA7075 elastic behavior based on
its complex microstructure involving irregularly shaped Al3Fe particles, elliptical MgZn2
ones, and needle-like CuAl2 ones. Their 3D RVE models accurately estimate the effective
elastic properties of the AA7075-O sheet. Reis et al. [7] use 2D RVEs to study heterogeneous
ductile materials, employing non-local formulations to predict the damage localization
path. As pointed out by Gillner and Münstermann [8] while working on 2D RVEs of a
ferrite pearlite steel, the RVE results can decrease the cost of experimental campaigns by
identifying the target microstructure able to increase fatigue lifetime. The above examples
confirm the use and the interest in both 2D and 3D RVEs. Based on statistical data analysis,
a systematic comparison of local results has been carried out by Qayyum et al. [9] to con-
clude that the 3D RVEs provide better quantitative results than experiments, whereas the
2D RVEs already provide appropriate qualitative information about the damage initiation
sites as well as an accurate macroscopic stress–strain response for a small and medium
plastic range, which is often sufficient for many practical applications. In a pragmatic way,
based on [10] and their own previous study [11], Qayyum et al. [9] suggest to generalize
that damage initiation in 2D RVEs occurs for a global strain of 6% earlier than the damage
initiation in 3D RVEs for Dual-Phase (DP) steel. Indeed, 2D RVE models can definitively be
exploited to understand hardening or damage mechanisms, as shown in [12], as well as
study the effect of a ferrite–martensite interface.

In materials science, the machine learning approach is currently applied for material
design. See, for instance, the DP steel design through 3D RVE simulations [13], where an
accurate use of 2D RVEs could significantly reduce computational costs, which is crucial
when generating the large datasets needed to train machine learning models. This efficiency
comes from the simpler geometry and numerical requirements of 2D simulations compared
to 3D ones, allowing for a quicker exploration of a wider range of material behaviors and
parameters. Furthermore, 2D RVEs make it easier to visualize and interpret the material
microstructure and its properties, which is beneficial during the early stages of a material
design (process parameter optimization as well as post-processing operations). These
observations explain our efforts to quantify the accuracy of a 2D RVE versus a 3D one for
matrix–precipitate material and to develop a specific 2.5D RVE.

Laser Powder Bed Fusion (L-PBF) produces materials with high strength [14,15],
whereas Friction Stir Processing (FSP) reduces the out-of-equilibrium microstructural state
without causing excessive softening [16]. A new FSP microstructure has the added benefit
of closing porosities, which positively impacts ductility and fatigue behavior within the
single FSP pass post-processed material [17]. In the present article, an L-PBF material
post-processed by FSP was chosen as the case study. The as-built L-PBF AlSi10Mg material
investigated has undergone testing in two orthogonal tensile directions [18] and has been
extensively characterized in previous research [14,18]. Its microstructure is defined by an
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interconnected Si network forming cells of different sizes according to their position within
each melt pool zone. Post-processed by FSP [15,17], the Si network is globularized into Si
particles. The alloy forms an aluminum matrix called the α phase (α-Al) containing Si-rich
precipitates which exhibit macroscopic isotropic behavior. As pointed out by different
authors [19,20], combining FSP with additive manufacturing (AM) on an industrial scale
presents both opportunities and challenges. FSP can significantly improve the mechanical
properties of AM parts by refining microstructures and addressing defects like porosity
and anisotropy, making it valuable for industries, such as aerospace and automotive, where
high material performance is crucial. However, large-scale implementation still requires
overcoming practical challenges, particularly the integration of FSP into highly automated
AM workflows. This would involve developing efficient, high-throughput systems to keep
up with production rates, and addressing issues like tool wear and process control, which
can be influenced by part geometries. Recent research has been increasingly focused on
combining AM and FSP to leverage the strengths of both processes [19–21].

Hereafter, we investigate the ability of 2D and 3D RVE simulations to accurately
predict the measured tensile hardening curve of a typical Al alloy microstructure, formed
by L-PBF and post-processed by FSP. In our simulations, currently the absence of cohesive
elements limits the detailed analysis of fracture mechanisms, a topic we intend to address
in future research as well as the fatigue behavior. As demonstrated by Yuan et al. [22],
who validated their plane strain RVE results with a tensile test before addressing fatigue
prediction, the accuracy of 2D and 3D RVEs is hereafter checked for the macroscopic tensile
stress–strain curve.

To define an RVE for this L-PBF FSP AlSi10Mg material, it is necessary to determine
its size, its finite element mesh, and the applied boundary conditions [23]. These choices
are not independent as periodic boundary conditions allow reducing the size of the RVE
volume. The selected mesh generator has to handle both geometric and boundary con-
dition periodicity [24,25]. Generating RVE meshes with periodic conditions and flexible
refinement for the matrix and particles is a complex task. Specific tools like Neper [26],
Digimat [27], and GMSH v 4.11.0 [28] have been investigated for this purpose. Hereafter, it
has been decided to develop scripts based on GMSH v 4.11.0 to build the desired microstruc-
ture mesh, since GMSH v 4.11.0 is quite flexible and comes with a well-documented Python
3.8 interface. This capability enables the creation of intricate scripts, including algorithms
that can reconstruct meshes using only quadrangle elements [29,30]. Additionally, features
such as imposing periodicity conditions on the mesh and handling complex geometric
operations such as cuts, fusions, and intersections between geometrical entities make it
straightforward to use with support from the OpenCascade library [31]. In the ULiege
Lagamine FEM software [32], to keep accuracy, it was chosen to mesh the 2D cut of the
L-PBF FSP AlSi10Mg microstructure using only quadrangle elements to avoid any locking.

Figure 1 summarizes the procedure described in this article to build a 2.5D RVE: a
one-plane layer of 3D finite elements relying on specific constraints in the out-of-plane
direction. This approach is able to model any isotropic material presenting a matrix with
particles. It keeps the low computation time of a 2D RVE compared with a 3D RVE.

The structure of this article is as follows: Section 2 presents the microstructure data
collected for designing the RVEs, along with the experimental tensile curve. Section 3
summarizes the various 2.5D RVE models tested under tension, including their mesh size,
specific boundary conditions tailored to mimic a 3D behavior, and the material constitutive
laws employed. Section 4 analyzes the predictions obtained from the 2.5D RVE simulations
versus experimental results, highlighting their superiority over simpler 2D cases such as a
simple membrane in a plane strain for instance. Section 5 compares all the 2D and 3D RVE
results with experimental data, while conclusions and future perspectives are discussed
in Section 6.
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2. Material Description

The material under investigation is an AlSi10Mg alloy manufactured by L-PBF and
post-processed with a single pass of FSP. The process parameters employed to fabricate
the samples in this study are detailed in Dedry et al. [33]. Figure 2a shows a typical
microstructure observed by SEM [15] while its post-processing by “ImageJ 1.52a” allows a
clear observation of the microstructure composed of globularized Si-rich particles within
an α-Al solid solution (see Figure 2b). The studied zone of 11.4 × 7.7 = 87.78 µm2 contains
157 Si hard particles embedded in the α-Al matrix. The smallest Si particles, i.e., area less
than 0.011 µm2 (Figure 2b), were not considered in this amount, as they do not affect the
mechanical behavior of the RVE. This conclusion was derived from the sensitivity analysis
of FE simulations [34] and from more than 100 experimental nanoindentations [33].
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Figure 2. (a) Microstructure of AlSi10Mg after FSP (Reprinted with permission from [15]. Copyright
Year ELSEVIER), (b) particles of Si from “IMAGEJ 1.52a” analysis.

Each particle is described by several parameters: the equivalent diameter of a cir-
cle with the same area Øeq, the equivalent ellipse with its aspect ratio AR defined by
Equation (1) varying between 0.247 and 0.941, and the particle orientation defined by the
angle α between the horizontal axis of the image and the major axis of the ellipse. The AR
is given as follows:

AR = b/a (1)

where 2b and 2a are the lengths of the minor and major axes of the equivalent ellipse. The
distribution of the particles with respect to their Øeq is in the range of [0.118; 0.695] µm with
a higher rate of small particles. The AR analysis shows few highly elongated equivalent
ellipses (AR < 0.4). The angles α show no strong dominant direction. A detailed description
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is available in the Supplementary Material. The well-known Pearson correlation coefficient
r used to determine the degree of linear correlation between two variables is recalled in
Equation (2):

rm,n =
cov(m, n)

σm.σn
(2)

If m and n are the variables, cov(m,n) is their covariance, and σm and σn are their
standard deviations, respectively. No correlation exists when rm,n = 0, while a perfect
negative or positive correlation is found when rm,n = −1 or +1, respectively. Here, the r
coefficients (Table 1), computed for each pair of geometric parameters describing the Si
particles, indicate a moderate (almost weak) correlation between AR and Øeq (Figure 3a)
and a weak correlation between both α and Øeq (Figure 3b) and α and AR (Figure 4a). A
corrected Pearson coefficient value is provided for the angle correlation, due to the periodic
context. These microstructural statistical observations are used to generate the RVE models.
If the blue dots in Figures 3 and 4 illustrate the low relationships between the particle size,
shape, and orientation observed in the SEM image, the black bullets correspond to the
10 particles of the medium-B RVE model (see Section 3.1).

Table 1. Correlation factors r between the geometric parameters of the Si particles.

AR vs. Øeq α vs. Øeq α vs. AR

−0.336 0.042 0.066
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In Figure 4b, the tensile test results of specimens, cut perpendicularly to the L-PBF
building direction and parallel to the FSP tool displacement direction, are depicted (see
process and test details in Zhao et al. [15] and Santos Macias et al. [17]). Very low experi-
mental result scattering is observed, and the average curve will be henceforth used as a
reference for the macroscopic material tensile behavior.
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3. Numerical Model

Lagamine FEM software [32], developed in ULiege since 1985, was used to design
the 2.5D RVE. This developed RVE was defined as a flat volume (a square cross-section
and a low thickness) composed of a single layer of 3D elements with constraints on nodal
out-of-plane displacements. If only classical J2 plasticity was exploited hereafter, note
that the Lagamine FEM code can handle a crystal plasticity approach. See, for instance,
Yuan et al. [35], where strain gradient crystal plasticity is used to examine size effects in
Nickel samples. Hereafter, the 3D RVE models were implemented in the METAFOR code
v3494 [36], another ULiege home-made software more focused on large simulations.

3.1. RVE Definition

To determine the ideal RVE size, three 2.5D square RVE sizes (called small, medium,
and large) are studied and compared. They contain 5, 10, and 15 elliptical Si-rich particles
and are characterized by 1.672, 2.365, and 2.896 µm sides, respectively. All these RVEs have
an average surface of 0.559 µm2 by particle, as in the experimental microstructure. Figure 5
shows the small and large RVE models while Figure 6 provides 2 distributions of particles
in the medium RVE, called medium-A and medium-B. The sizes, shapes, and orientations
of the Si particles are distributed in a comparable way to those of the SEM microstructure
image (see the black bullet points in Figure 3a,b and Figure 4a for the medium-B model).

The Si particle positions are defined randomly. Table S1 of the Supplementary Material
describes the 10 particles in the medium-B model. To avoid any bias in the periodic
geometrical representation, the particles can cross the edges of the RVE. To ensure the
periodicity, the missing particle parts are replicated on the opposite sides (Figures 5 and 6).
Different meshes have been generated by a dedicated Python 3.8 script using the GMSH
v 4.11.0 software API. The mesh density can be defined in the matrix and for each particle,
allowing to refine the mesh where it is necessary. Each 2D RVE mesh is created with linear
quadrangle elements, representing the α-Al matrix and the Si particles defined as ellipses.
The periodic boundary conditions are directly applied on mirror nodes. The domain is
extruded to generate one layer of 3D hexahedron elements defining the 2.5D model.



Metals 2024, 14, 1244 7 of 22Metals 2024, 14, x FOR PEER REVIEW 7 of 22 
 

 

 

 
(a) (b) 

Figure 5. (a) Small RVE model of 1.672 µm side with 5 particles and (b) large one of 2.896 µm side 
with 15 particles of Si. 

 
(a) (b) 

Figure 6. Medium RVE models of 2.365 µm side with two distributions of the 10 particles: (a) me-
dium-A, (b) medium-B (each of the 10 particles are further described in Supplementary Materials)   

The Si particle positions are defined randomly. Table S1 of the Supplementary Mate-
rial describes the 10 particles in the medium-B model. To avoid any bias in the periodic 
geometrical representation, the particles can cross the edges of the RVE. To ensure the 
periodicity, the missing particle parts are replicated on the opposite sides (Figures 5 and 
6). Different meshes have been generated by a dedicated Python 3.8 script using the 
GMSH v 4.11.0 software API. The mesh density can be defined in the matrix and for each 
particle, allowing to refine the mesh where it is necessary. Each 2D RVE mesh is created 
with linear quadrangle elements, representing the α-Al matrix and the Si particles defined 
as ellipses. The periodic boundary conditions are directly applied on mirror nodes. The 
domain is extruded to generate one layer of 3D hexahedron elements defining the 2.5D 
model. 

Examples of coarse, intermediate, and refined meshes are plotted in Figure 7 for the 
medium-B case of 10 Si particles. The density of elements per µm2 and the total number 
of elements in all the tested models are summarized in Table 2. Note that all the meshes 
have one layer of height-node brick BWD3D elements, implemented in the Lagamine code 

Figure 5. (a) Small RVE model of 1.672 µm side with 5 particles and (b) large one of 2.896 µm side
with 15 particles of Si.

Metals 2024, 14, x FOR PEER REVIEW 7 of 22 
 

 

 

 
(a) (b) 

Figure 5. (a) Small RVE model of 1.672 µm side with 5 particles and (b) large one of 2.896 µm side 
with 15 particles of Si. 

 
(a) (b) 

Figure 6. Medium RVE models of 2.365 µm side with two distributions of the 10 particles: (a) me-
dium-A, (b) medium-B (each of the 10 particles are further described in Supplementary Materials)   

The Si particle positions are defined randomly. Table S1 of the Supplementary Mate-
rial describes the 10 particles in the medium-B model. To avoid any bias in the periodic 
geometrical representation, the particles can cross the edges of the RVE. To ensure the 
periodicity, the missing particle parts are replicated on the opposite sides (Figures 5 and 
6). Different meshes have been generated by a dedicated Python 3.8 script using the 
GMSH v 4.11.0 software API. The mesh density can be defined in the matrix and for each 
particle, allowing to refine the mesh where it is necessary. Each 2D RVE mesh is created 
with linear quadrangle elements, representing the α-Al matrix and the Si particles defined 
as ellipses. The periodic boundary conditions are directly applied on mirror nodes. The 
domain is extruded to generate one layer of 3D hexahedron elements defining the 2.5D 
model. 

Examples of coarse, intermediate, and refined meshes are plotted in Figure 7 for the 
medium-B case of 10 Si particles. The density of elements per µm2 and the total number 
of elements in all the tested models are summarized in Table 2. Note that all the meshes 
have one layer of height-node brick BWD3D elements, implemented in the Lagamine code 

Figure 6. Medium RVE models of 2.365 µm side with two distributions of the 10 particles: (a) medium-A,
(b) medium-B (each of the 10 particles are further described in Supplementary Materials).

Examples of coarse, intermediate, and refined meshes are plotted in Figure 7 for the
medium-B case of 10 Si particles. The density of elements per µm2 and the total number
of elements in all the tested models are summarized in Table 2. Note that all the meshes
have one layer of height-node brick BWD3D elements, implemented in the Lagamine code
by Zhu and Cescotto [37]. This type of element is based on the non-linear three-field HU-
WASHIZU variational principle of stress, strain, and displacement [38,39]. It uses a mixed
formulation adapted to large strains and large displacements with a reduced integration
scheme (only one integration point per element) and an hourglass control technique.
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Figure 7. Example of meshes used for the medium-B RVE model with the following:
(a) 262 elements/µm2 and 1463 elements in the RVE, (b) 800 elements/µm2 and 4477 elements,
(c) 1881 elements/µm2 and 10,519 elements. Si particles are highlighted in brown color.

Table 2. Density and number of brick elements within the 2.5D RVE.

Model Number of Brick Elements per µm2 (Total Number of Brick Elements)

Small 1162 1991 2847
5 particles (3248) (5566) (7960)

Medium-A 178 453 527 639 771 1299 1916 2863
10 particles (997) (2536) (2950) (3574) (4314) (7266) (10,718) (16,014)

Medium-B 262 539 800 975 1382 1881 2835
10 particles (1463) (3017) (4477) (5452) (7732) (10,519) (15,858)
Visualization Figure 7a Figure 7b Figure 7c

Large 173 1351 1893 2903
15 particles (1448) (11,334) (15,879) (24,347)

In our study, the interfaces between elements are defined as continuous zones where
a single displacement is associated with the nodes at the interface. It ensures that the
mechanical response is consistent across the interface, facilitating stress and strain distri-
bution throughout the model. This continuous interface allows for effective load transfer
between adjacent elements, which is crucial for simulating realistic material behavior until
decohesion happens. To study fracture and damage evolution, a future extension of the
FEM simulations will serve to replace this continuous interface by cohesive elements.

A full 3D RVE is also built and meshed, with a cube matrix and ellipsoid particles. The
mesh consists in this case of second degree tetrahedron elements, as automatic unstructured
hexahedral meshes are not available. For the generation of a 3D RVE from 2D measured
data, it is necessary to make some assumptions. Let us remember that any Si particle
requires 9 numbers in 3D to be defined: the 3 coordinates of the centroid, the dimensions of
the 3 axes, and the 3 Euler angles describing its orientation. It is necessary to optimize the 3D
particle features to define a representative 3D RVE from the 2D experimental microscopic
images. The optimization methods most commonly used are gradient methods but they
are highly dependent on the initial coordinates and are subject to becoming trapped in
local minimum. The gradient computation is resource consuming and binds the variables’
changes together by defining a direction of evolution. When the number of variables to be
optimized is important, an algorithm from the metaheuristics family is preferred because
it allows solving complex problems without requiring the gradient computation. In this
study, the optimization problem will be solved by using a genetic algorithm.

A genetic algorithm relies on several steps regardless of the problem to solve. Con-
sidering the case of a 3D RVE containing 10 ellipsoidal Si particles, 90 variables are to be
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optimized. The first step consists of producing an initial population composed of several
hundreds of characters, each one representing the properties to describe 10 ellipsoids. The
next step consists of computing a fitness criterion (i.e., the optimization criterion) for each
character. In this case, the “fitness criterion” allows describing the ability of the ellipsoid
properties to model a representative microstructure of the 2D microscopic images. The
choice of the optimization criteria will be described in the following paragraph. If the
current set of ellipsoids reaches the convergence criterion, the algorithm halts. Otherwise,
the characters are ranked based on their fitness, with the top half chosen as parents to
produce the next generation. Each parent transmits 50% of its genes to a new character (i.e.,
50% of the ellipsoid properties). Mutations can then occur and can affect the properties
of the ellipsoids. The mutations are added to the genetic algorithms in order to limit the
convergence to local minima. The first 10 percent of the ranked characters are retained as is.
These operations are then repeated until the algorithm converges.

To simplify the optimization problem, two successive genetic algorithms were used.
The first one allows optimizing the ellipsoid dimensions and their orientation. The di-
mensions of the ellipsoids were generated from a uniform distribution within a range
established from the histograms presented in the Supplementary Materials. The Euler
angles were also generated from a uniform distribution. For the computation of the first op-
timization criterion, the intersections of the ellipsoids have been computed for several tens
of planes defined by random normal vectors. This allows estimating 2D statistics which can
then be compared to the measured statistics. In order to facilitate the implementation of the
genetic algorithm, it is preferable to keep a single optimization criterion. The first criterion
corresponds to the sum of squares of the frequency differences between the experimental
histograms and those obtained from the intersections. The orientation histogram is not
included in this calculation of the criterion as orientation is a periodic variable and the
considered interval depends on a reference frame that would be arbitrary in the case of
random normal vectors to define cutting planes. The histogram is afterwards generated to
check the absence of preferential orientation.

Once the first algorithm converges, a total volume can be determined for the best set of
properties that allows us to calculate the dimensions of a cubic RVE for a given fraction. The
second genetic algorithm then optimizes the centroid coordinates to limit the intersections.
These coordinates were generated from a uniform distribution between 0 and the RVE
side length. In this algorithm, the optimization criterion is the sum of the intersection
volumes between each pair of ellipsoids, considering the periodicity of the RVE. Four 3D
RVE models are defined by this method with 5, 10, 15, and 20 Si particles. The particles of
the largest model are described in Table S2 in the Supplementary Material, while Table 3
provides the mesh density of the 3D RVE models chosen to be related to the ones used in 2D.
Note that the 3D RVE FEM simulations are conducted using the METAFOR code v3494 [36],
with second degree Tetrahedron elements preventing volume locking and implemented
accordingly [40].

Table 3. Density and number of brick elements in the 3D RVE.

Model Number of Brick Elements per µm2

(Total Number of Brick Elements)

3D-5P 1124 1857
5 particles (29,337) (62,290)

3D-10P 1129 1864
10 particles (73,042) (155,027)

3D-15P 1213 1681
15 particles (95,570) (155,926)

3D-20P 979 1153 1597
20 particles (109,816) (140,224) (228,729)
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Within all RVEs, isotropic Hooke’s law is adopted to model the elastic behavior of
Si particles, and due to their very high yield limit (about 7000 MPa), no plastic behavior
is assumed. Regarding the α-Al matrix, an isotropic elasto-plastic (J2) model is applied
with an isotropic hardening law described by the Voce law in Equation (3), as used in other
research focused on Al alloys [41–43]:

σF = σ0 + K
(

1 − exp(−n. εpl)
)

(3)

where σF is the updated yield stress, εpl is the plastic strain, and σ0, K, and n are the
material data.

3.2. Boundary Conditions and Loading

The 2D periodicity of the boundary conditions is ensured by imposing relationships
between the displacements of the nodes along all the edges of the FEM model, as shown
in Figure 8a. The equations linking the displacements in the XY plane of the edge nodes
are detailed in Table 4 for the 2.5D case. They ensure that the sides b and d keep the same
deformed shape as the sides a and c, respectively, throughout the whole tensile process. An
external node, called RY, and linked to the nodes along the sides c and d, is used to load the
model in the Y direction. Extensions of these classical periodic conditions are applied to
each face of the 3D RVE.
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(b) fixation and displacements in Z direction, notation: edge nodes A, B, C, D, sides a, b, c, d.

Table 4. Description of the links between the displacements (u, v) of nodes A, B, C, D along the edges
a, b, c, d in X and Y directions.

Constraints in X Direction in Y Direction

uB = uA + uR vB = vA

uD = uC vD = vC + vRY

However, for a 2.5D RVE, the boundary conditions in the XY plane are not suffi-
cient. The displacement conditions in the Z direction must also be adjusted to achieve a
three-dimensional stress state similar to that of a 3D model. When simulating a simple ten-
sile test along the Y direction with an RVE model without conditions on the third direction
Z and the out-of-plane stresses, it was observed that the lateral strains, εXX, are almost
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uniform in each Si particle and are also very close from one particle to another. Moreover,
since the simplified 2.5D model should behave similarly to a 3D RVE model for this uniaxial
tensile test, both the lateral strains εXX and εZZ should be almost homogeneous in each Si
particle. Globally, for each finite element, the lateral strains along the X and Z directions
should be close.

Within the 2.5D RVE simulations, two external nodes (RAl, RSI) (Figure 8b) are used to
control the out-of-plane strain state with linear elastic relations between the displacements
along the Z of the nodes of the front side (wAl ,wSi) and of the external nodes (wRAl ,wRSi).
The spring-like finite elements expressing these elastic relations (hereafter referred to as
“springs”) are calibrated by their stiffness values (kAl ,kSi), for the elements belonging to the
α-Al matrix and to the Si particles, respectively.

Since these stiffness values (kAl ,kSi) depend on the nodal densities in each phase and
must be defined for each model, two macro stiffness parameters, KAl and KSi, common to
all models and representing the stiffness of all the springs per unit area, have been defined
in Equations (4) and (5). These last macro-data are consequently independent from the
model size and from the mesh density. They were used to define the specific values of kAl
and kSi in any 2.5D RVE model.

KAl =
nSA kAl

dimx dimy PAl
(4)

KSi =
nSS kSi

dimx dimy PSi
(5)

where nSA and nSS are the total number of springs in the Z direction attached to the nodes
of the Al and Si elements, dimx and dimy are the dimensions of the 2.5D RVE model in the
X and Y directions, and PAl and PSi are the surface ratio covered by the matrix and particle,
respectively. The interface nodes attached to both the matrix and particles are considered
attached to the Si material.

4. Law Identification of 2.5D RVE Model and 2D RVE Versus 2.5D RVE Results

The constitutive laws used for each phase, the material dataset, and the interface
behavior between the Al and Si phases are key ingredients for the quality of the RVE results.
In previous studies [33,34], the Young modulus of particles and the material behavior
for each phase were separately measured by nanoindentation tests. Both Poisson ratios
were estimated to be equal to 0.3, consistent with the values found in the literature. The
numerical simulation of a macro tensile test with the medium-B RVE model and a fine mesh
(model shown in Figure 7c with 1881 elements/µm2 and a total of 10,519 brick elements)
is used to adjust the Voce material parameter and the numerical parameters kAl ,kSi of the
model by the inverse method.

More specifically, the data of the constitutive law of the matrix (σ0, K, and n in Table 5)
are identified by minimizing the difference between the numerical prediction and the aver-
age measured macro tensile curve (see curve “Exp-aver” in Figure 9a). These parameters,
close to those determined from the indentation measurements [33,34], allow recovering
the experimental stress–strain curve (see Figure 9a). The spring stiffnesses values (kAl ,kSi)
of the 2.5D model are adjusted by reducing the deviation between the deformations εXX
and εZZ over all the elements of the model (Table 6). This result is used to compute the
macro stiffnesses values KAl and KSi, through Equations (4) and (5). Those generic values
are exploited to compute the spring stiffnesses of all the other models (small, medium,
large) and all the mesh densities. Note that the applied α-Al matrix behavior identifica-
tion methodology required less experimental data than the former approach based on
indentation experiments.



Metals 2024, 14, 1244 12 of 22

Table 5. Material data of the Si particles and the α-Al matrix defined for the 2.5D RVE model.

Si—Elastic Law α-Al—Elastic Law α-Al—Voce Law

E [MPa] ν E [MPa] ν K [MPa] σ0 [MPa] n

167,000 0.3 83,744 0.3 163.0 176.7 21
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Table 6. Spring stiffness values for out-of-plane displacements with kAl and kSi identified for the
medium-B RVE model and the fine mesh shown in Figure 7c and KAl and KSi used in any model
(Equations (4) and (5)).

Stiffness per Spring [N/mm] Stiffness per Area [N/mm3]

kAl kSi KAl KSi

0.0121 2.11 2.27 × 107 4.66 × 109

Figure 9a also shows the behavior of the two phases present in the composite material
(α-Al matrix and Si-rich particles). The 2.5D RVE developed in this research is compared in
Figure 9b with two 2D RVEs: a classical membrane one, in the plane strain state, and a 2D
RVE called “Free in Z” where the out-of-plane springs are disabled, which behaves like a
thin membrane composed of 3D elements. These results show the effect of the out-of-plane
boundary conditions on the predicted stress–strain curves. The plane strain state is far
too stiff to correctly predict the experimental behavior of the material, while the 2.5D RVE
and 2D Free in Z predictions and experiments overlap. Although the difference between
the 2.5D and “Free in Z” for macro predictions seems negligible, the local distribution of
stress still needs to be analyzed. Looking at the AA cross-section passing through several
Si particles and passing through a zone where the deformations are high (Figure 10a), one
can easily verify that the distributions of strains and stresses are indeed close in the X
and in Z directions in the 2.5D RVE model (Figure 10b,c) for Si particles and for the α-Al
matrix. The predictions the local stress components XX and ZZ, σXX and σZZ respectively,
along cut AA of the two models, “Free in Z” and 2.5D RVEs, are further investigated in
Figures 11 and 12. These plots underline the effect of the specific boundary conditions on
these stress components. The stress distribution of the 2.5D RVE model is closer to the
expected physical isotropic behavior.
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Figure 10. (a) Position of section AA and of the element E in the 2.5D RVE model, (b,c) strain
distribution along cut AA in the 2.5D RVE for a macro strain of 10% in Y direction, (b) in Si particles,
(c) in α-Al matrix.
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Figure 12. Comparison of the stress state in 2D RVE “Free in Z” and 2.5D models for a macro strain
of up to 10% in the Y direction: (a) absolute difference between σXX and σZZ along cut AA direction,
(b) stress evolution in the element E.

The decrease in the difference between σXX and σZZ in the 2.5D RVE model compared
to the 2D RVE “free in Z” case is further quantified in absolute value in Figure 12a for cut
AA, while the stress evolution in the E element during the tensile simulation (see element E
position in Figure 10a) confirms the improvement of the “isotropic” behavior in an average
sense in Figure 12b for the 2.5D RVE compared to the “Free in Z” RVE model. Indeed, due
to the material macroscopic isotropy, the Y tensile load should not affect the Z and X stress
and strain fields differently on average. To quantify the improvement of the stress state in
the 2.5D RVE model, Equation (6) computes the average difference ∆ between the two stress
components σXX,i and σZZ,i, for a macro strain of 10% in the Y direction, considering all the
elements along cut AA and throughout the entire model. Three models are compared: the
membrane in the plane strain state, the “Free in Z” model, and the 2.5D RVE. All the values
pertain to the medium-B model and use the same fine mesh. Table 7 shows that the 2.5D
model better describes the behavior of the material thanks to the decrease in the ∆ value.

∆ =
∑n

i=1|σXX,i − σZZ,i|
n

(6)

Table 7. Comparison of the average difference ∆ [MPa] along cut AA and in all the elements of the
models for a macro deformation of 10% in the Y direction, in the plane strain state, the “Free in Z”,
and the 2.5D RVEs.

Cut AA Whole Model

Plane Strain Free in Z 2.5D Plane Strain Free in Z 2.5D

181 69.4 52.5 182 36.2 31.8

5. Result Analysis and 2D/3D Validation

All the 2.5D RVE models (5, 10, and 15 elliptical Si-rich particles with different particle
distributions, different mesh sizes, and node densities) and 3D RVE models (5, 10, 15,
and 20 elliptical Si-rich particles and different mesh sizes) presented in Tables 2 and 3
are used for a sensitivity and convergence analysis. A single input dataset (out-of-plane
macro stiffness parameters KAl and KSi (Table 6) and material data of Table 5) is applied
within all these simulations. A uniaxial tensile test up to a macro strain of 10% is modeled,
and the FEM simulation results of a “20 particles_3D RVE refined mesh” as well as a
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“10 particles_2.5D RVE Medium B mesh” are compared, with the experiment in Figure 13a
showing good accuracy.
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Figure 13. Comparison of the experimental macro stress (Exp-aver) with the predictions of 2.5D RVE
and 3D RVE models: (a) tensile test up to 10% in the Y direction, (b) the final macro stress for a macro
deformation of 10%, for all the 2.5D RVE and 3D RVE models of Tables 2 and 3.

The macro-(true) stresses, calculated as the applied force associated with an imposed
displacement corresponding to a true strain of 10%, divided by the average cross-sectional
area relative to each RVE case and mesh density, are compared in Figure 13b. From a
macroscopic point of view, all the 2.5D RVE models (small, medium-A, medium-B, large)
are quite similar. They converge to a single value, slightly underestimating the experimental
average stress, while the scattering between the 3D RVE results is a little larger, and the 3D
RVE results present an overestimation of the experiment.

For the 2.5D RVE and microstructure studied, a fine mesh with around 1900 elements
per µm2 can accurately predict the macro stress behavior. A logic curve convergence based
on mesh densities and RVE sizes is observed, and the impact of particle distribution is
quantified between medium-A and -B simulations, confirming that 10 particles is enough
in 2D RVE simulations to have a reliable answer. Note that the medium-B model with
10 particles, 1881 elements per µm2, and named “Ref. case” in Figure 13 (hollow circle
dot) was the one used to identify the behavior of the α-Al matrix material (Table 5) and to
analyze the local stress and strain fields.

In 3D simulations, a complete convergence analysis on mesh densities and RVE sizes
was not performed; however, refining the mesh decreases the macro stress computed at a
10% strain and increases the accuracy. This indicates that a coarse mesh cannot adequately
handle the high strain and stress gradients near the matrix–particle interface due to the
material stiffness differences.

One might argue that the relative position of the results for the different number of
particles (also defining the RVE size) in 2D or 3D RVEs, as shown in Figure 13b, appears
erratic beyond the positive effect of mesh refinement. However, the authors believe that
this just confirms that all these RVE sizes are reliable for predicting the macroscopic curve,
provided the mesh refinement is correct (see Figure 14). The results also show a difference
between a 2.5D RVE and 3D RVE, justifying the effort to consider boundary conditions in
the transverse direction. Figure 14 indicates that using 5 to 20 particles in a 3D RVE still
results in some scattering like the physical experiments. While larger RVEs would reduce
this scattering, this investigation was not performed as the main goal of the article is to
save computational costs and develop a 2.5D RVE approach.
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Figure 14. Normalized macro stresses and their average values for the experiments (Exp) and the
2.5D RVE (5, 10A, 10B, 15 particles) and 3D RVE (5, 10, 15, 20 particles) simulations for a mesh density
around 1800 elements per µm2.

Figure 14 shows that the average responses of 2.5D RVE and 3D RVE predictions fall
within or close to the scattering observed in experimental tests (4%). Even though the 3D
RVE demonstrates a better accuracy, the 2.5D RVE maintains an error of less than 4% and
remains within the standard experimental deviation.

The result scattering between the 2.5D and 3D RVE models is due to the high sensitivity
of the maximum local stress to the relative position of the particles. The small model with
five particles predicts a lower maximum stress due to its low number of particles unable
to represent all the possible interactions between the particles and matrix as in the real
material. On the contrary, when the number of particles increases up to 10, like in the
medium-A, the medium-B, or for the 15 particle models in the 2.5 D RVE, the gap between
the maximum stresses in the simulations is reduced. The same observation is also found
for the maximum stresses in the transverse and in the out-of-plane directions or in the 3D
RVE models.

Experimental material isotropy is validated in the 2.5D RVE for 10 particles and for
3D RVE for 15 and 20 particle cases. A minimum number of particles is indeed required to
correctly model the material behavior. For the 2.5D RVE, Figures 15 and 16 plot the strain
and the stress fields, respectively, according to the directions X (a) and Z (b) at the end of
the simulation for a macro strain of 10% and for the “Ref. case”. These figures confirm
that similar stress and strain states are observed in both the X and Z directions and that, of
course for a Y tensile direction, the internal transversal stress is very low only due to the
differences in matrix and particle strengths. The internal total transversal strains have to
account for the elastic volume changes and the plastic deformation heterogeneity due to
the particles. The equal local strain fields in the X and Z directions in any cut of the 2.5D
RVE are far from being exactly reached, as the macroscopic equality is applied as a light
constraint, which just helps to define a consistent behavior in the Z direction within the
2.5D RVE simulation. Moreover, Figures 15 and 16 confirm the efficient implementation of
the periodic boundary conditions.
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Figure 17 presents the 2.5D RVE distribution of strains (a) and stresses (b) in the load-
ing direction (Y). The critical areas are at the matrix–particle interface with risks of deco-
hesion and where the experiment predicts rupture initiation [15]. One could even see in 
Figure 17a the beginning of a strain localization between some particles. The current 
model without cohesive elements at a matrix–particle interface does not include the dam-
age evolution present at the interface in the real material for a macro strain larger than 
0.10. The degradation of the interface is probably already beginning earlier, so no quanti-
tative interpretation was completed here within the current results, assuming continuous 
interfaces. However, the predicted trends seem consistent with the damage mechanisms 
already experimentally identified in [15] (decohesion, localization, rupture of particles 
starting around 10% strain).  

Figure 15. Local strain fields predicted by the 2.5D RVE Ref. model for a macro tensile strain of 10%
in the Y direction: (a) εXX , (b) εZZ. Si particle contours are highlighted in black.
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Figure 16. Local stress fields predicted by the 2.5D RVE Ref. model for a macro tensile strain of 10%
in the Y direction: (a) σXX , (b) σZZ. Si particle contours are highlighted in yellow.

Figure 17 presents the 2.5D RVE distribution of strains (a) and stresses (b) in the
loading direction (Y). The critical areas are at the matrix–particle interface with risks of
decohesion and where the experiment predicts rupture initiation [15]. One could even
see in Figure 17a the beginning of a strain localization between some particles. The
current model without cohesive elements at a matrix–particle interface does not include
the damage evolution present at the interface in the real material for a macro strain larger
than 0.10. The degradation of the interface is probably already beginning earlier, so
no quantitative interpretation was completed here within the current results, assuming
continuous interfaces. However, the predicted trends seem consistent with the damage
mechanisms already experimentally identified in [15] (decohesion, localization, rupture of
particles starting around 10% strain).
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A direct comparison of the local fields between 2.5D and 3D RVE simulations is not 
straightforward, as even if built for the same particle statistics, the particle distribution 
methodology used does not impose a similar choice of particles. For the 3D RVE (Figure 
18) and 2.5D RVE (Figures 16 and 17), simulations with a similar mesh density and edge 
size are presented. The computed local stress fields are in close range. In agreement with 
the predicted global macro stress shown in Figure 14, the 2.5D RVE predicts local stresses  
as being slightly lower than the 3D RVE results. The level of the 2.5D RVE results is sensi-
tive to the transversal boundary condition optimized to recover the macroscopic stress–
strain curve. As shown in Figure 9, the plane strain is definitively too stiff and the Free Z 

Figure 17. Strain and stress fields predicted by the 2.5D Ref. RVE model for a macro tensile
deformation of 10% in the Y direction: (a) εYY , (b) σYY . Si particle contours are highlighted in black.

The local stress fields (Figures 15–19) computed by the Lagamine (2.5D RVE) and
METAFOR v 3494 (3D RVE) codes show a close agreement for the matrix stress value, even
if the distribution of particles differs between the 2.5D square and the 3D cube, and if these
stresses are computed by different element types. These RVEs are built for the same particle
statistics (see Image J post-processing in Section 2), so indeed both models should provide
similar results on average.
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Figure 18. For a macro tensile deformation of 10% in the Y direction, (a) predicted stress σXX and
(b) σZZ by 3D RVE 20 particles (METAFOR v 3494 software) in (MPa) with a scale similar to Figure 16
(Lagamine software, 2.5D RVE) and stress σYY (c) with a scale similar to Figure 17b.

A direct comparison of the local fields between 2.5D and 3D RVE simulations is not
straightforward, as even if built for the same particle statistics, the particle distribution
methodology used does not impose a similar choice of particles. For the 3D RVE (Figure 18)
and 2.5D RVE (Figures 16 and 17), simulations with a similar mesh density and edge size
are presented. The computed local stress fields are in close range. In agreement with the
predicted global macro stress shown in Figure 14, the 2.5D RVE predicts local stresses as
being slightly lower than the 3D RVE results. The level of the 2.5D RVE results is sensitive
to the transversal boundary condition optimized to recover the macroscopic stress–strain
curve. As shown in Figure 9, the plane strain is definitively too stiff and the Free Z condition
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does not allow having a similar stress state in the X and Z directions (Figure 12), as expected
and indeed predicted by the 3D RVE simulations (Figure 18a,b).
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Figure 19. For a macro tensile deformation of 10% in the Y direction, predicted strain εYY , (a) and
stress σYY in (MPa) (b) by a 3D RVE 20 particles (METAFOR v 3494 software).

The 3D RVE simulation result in the Y direction (Figure 19) confirms the strong
heterogeneity of the stress and strain fields close to the particles. The 2.5D RVE model
presents, versus a 3D RVE one, a high CPU advantage as the associated simulation times are
decreased by a factor 417 (real time) or 2581 (CPU time). The parallel computing distribution
is only interesting for the 3D RVE. This computing time comparison was performed on an
AMD Thread Ripper 3970X 32-Core Processor (PRIMINFO, Liège, Belgium), exploiting16
threads for similar mesh densities.

6. Conclusions

A methodology for constructing a 2.5D RVE that improves the FEM prediction of local
stress and strain fields in an isotropic two-phase material (matrix and particles) has been
described. Less accurate than a 3D RVE simulation but improved compared to classical 2D
RVE approaches, a 2.5D RVE provides a quick alternative for the identification of particle
shapes and sizes, generating an optimal tensile behavior.

The tensile behavior of the L-PBF AlSi10Mg material post-processed by FSP and
presenting a soft matrix compared to stiff particles has been predicted by RVEs. The high
local gradients near the matrix–particle interfaces, which corresponds to the experimentally
observed damage modes, were computed. The simulation results show that all RVE
simulations could predict stress–strain curves. The plane strain 2D RVE evaluates a tensile
curve with an excessive stiffness compared to the macroscopic experiment. The “Free in
Z” 2D RVE and 2.5D RVE predictions are quantitatively close to the experimental values.
By analyzing the strain fields according to the X and Z directions for a tensile test in the
Y direction, the isotropic behavior is better recovered in an average way for a 2.5D RVE
than for a “Free in Z” 2D RVE assumption. Cohesive elements would be necessary to
quantitatively simulate static failure (strain above 10% not investigated here).

The key advantage of the 2.5D model is its computational efficiency. The identified
microstructure by a 2.5D RVE could speed up an accurate 3D RVE optimization. Indeed,
the CPU time of a 3D RVE becomes an issue if optimization loops, deep learning training,
or FE2 computation are foreseen. A long-term goal could be the extension of the 2.5D RVE
with matrix–particle decohesion and advanced cyclic damage constitutive law to address
the prediction of Wöhler curves. It should speed up material design for improved behavior
in fatigue.
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While the 2.5D RVE approach offers substantial computational efficiency and main-
tains accuracy in many cases, there are situations where the 3D RVE may be more suit-
able. For example, when dealing with materials that exhibit strong anisotropy or com-
plex 3D microstructures—such as intricate grain orientations, strong anisotropy behav-
ior of each particle, void distribution with a non-representative planar pattern, or fiber
reinforcements—the 2.5D approximation will not fully capture the material behavior. In
those cases, where out-of-plane stresses present strong heterogeneity between particles or
where full 3D representation is necessary to characterize the microstructure geometry, the
prediction of mechanical responses even under a uniaxial tensile or compression load with
a 2.5D RVE will be inaccurate. Therefore, for materials with complex 3D microstructures,
the 3D RVE remains the preferred choice to ensure accuracy across all spatial dimensions.

The uniaxial target loading is also a limitation, even for material presenting an isotropic
behavior. Any macroscopic load where a relation between some average strain components
can be found thanks to the material isotropic property could bring a methodology extension;
however, complex loading will be excluded. While the current model successfully estimates
the monotonic tensile curve, it may benefit from further extensions, such as incorporating
kinematic hardening into the matrix constitutive model, to enhance its accuracy and
applicability into cyclic scenarios.

In conclusion, the 2.5D method classifies different microstructures, speeds up material
design, and saves resources compared with the 3D RVE method. The simplicity of the 2D
RVE mesh operation as well as the short direct link from 2D SEM images to define a repre-
sentative set of particles without complex tomography experiments or image reconstruction
is of interest. Our qualitative comparison of a 2.5D RVE versus a 3D one has not pointed
out a huge accuracy decrease in the local interface matrix–particle stress and strain field. So,
future work should include a statistical comparison of 2.5D and 3D RVE results to identify
if a factor relating 2.5D RVE local interface information to a 3D one for matrix–particle
microstructure is required, as suggested by Qayyum et al. [9]. Cyclic loading simulations
are also foreseen to address fatigue behavior. Purely numerical perspectives are numerous,
such as an easy study of the effects of the proportions, sizes, shapes, orientations, and distri-
butions of the particles, and of the strength ratio matrix/particle on mechanical properties,
as long as the macroscopic behavior stays isotropic.
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Table S2: Description of the 20 elliptical Si particles in the largest 3D RVE model (radii, volume, and
Euler angles).
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