[en] While studies on the sublethal effects of chemical residues in beeswax on adult honey bees are increasing, the study protocols assessing the impacts on honey bee brood in realistic conditions still need to be investigated. Moreover, little is known about the residue's effect on gene expression in honey bee brood. This study reports the effects of chlorpyriphos-ethyl, acrinathrin and stearin worker pupae exposure through contaminated or adulterated beeswax on the gene expression of some key health indicators, using a novel in vivo realistic model. Larvae were reared in acrinathrin (12.5, 25, 10 and 100 ppb) and chlorpyriphos-ethyl (5, 10, 500 and 5000 ppb) contaminated or stearin adulterated beeswax (3, 4, 5, 6 and 9%) in newly formed colonies to reduce the influence of external factors. On day 11, mortality rates were assessed. Honey bee pupae were extracted from the comb after 19 days of rearing and were analysed for the gene expression profile of four genes involved in the immune response to pathogens and environmental stress factors (Imd, dorsal, domeless and defensin), and two genes involved in detoxifications mechanisms (CYP6AS14 and CYP9Q3). We found no linear relation between the increase in the pesticide concentrations and the brood mortality rates, unlike stearin where an increase in stearin percentage led to an exponential increase in brood mortality. The immune system of pupae raised in acrinathrin contaminated wax was triggered and the expression of CYP6AS14 was significantly upregulated (exposure to 12.5 and 25 ppb). Almost all expression levels of the tested immune and detoxification genes were down-regulated when pupae were exposed to chlorpyrifos-contaminated wax. The exposure to stearin triggered the immune system and detoxification system of the pupae. The identification of substance-specific response factors might ultimately serve to identify molecules that are safer for bees and the ecosystem's health.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
El Agrebi, Noëmie ; Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
De Smet, Lina; Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, Ghent University (UGent), Ghent, Belgium ; Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Ghent, Belgium
Douny, Caroline ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Scippo, Marie-Louise ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Svečnjak, Lidija; University of Zagreb, Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Zagreb, Croatia
de Graaf, Dirk C; Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, Ghent University (UGent), Ghent, Belgium ; Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Ghent, Belgium
Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appliqués aux sciences vétérinaires
Language :
English
Title :
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression.
Operational General Direction in Agriculture, Natural Resources and Environment University of Liège
Funding text :
Operational General Direction in Agriculture, Natural Resources and Environment (DGARNE) (Grant Quali Wax D32-0443) and the University of Li\u00E8ge (cr\u00E9dit facultaire). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Oleon NV for providing us with stearin. This work would not have been accomplished without the help of Benoit Dupret, the beekeeper that helped supervise the experimental apiary.
Al-Kahtani SN, Taha EK A. Effect of comb age on cell measurements and worker body size. PLoS One. 2021, 16, 11–13. https://doi.org/10.1371/journal.pone.0260865 PMID: 34860846
Wilmart O, Legrève A, Scippo M-L, Reybroeck W, Urbain B, de Graaf DC, et al. Honey bee exposure scenarios to selected residues through contaminated beeswax. Sci Total Environ. 2021, 772, 145533. https://doi.org/10.1016/j.scitotenv.2021.145533
Calatayud-Vernich P, Calatayud F, Simó E, Picó Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ Pollut. 2018, 241, 106–114. https://doi.org/10.1016/j.envpol.2018.05.062
Daniele G, Giroud B, Jabot C, Vulliet E. Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environ Sci Pollut Res Int. 2018, 25(7), 6145–6153. https://doi.org/10.1007/ s11356-017-9227-7
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, et al. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One. 2010, 5 (3), e9754. https://doi.org/10.1371/journal.pone.0009754 PMID: 20333298
Piechowicz B, Mróz K, Szpyrka E, Zwolak A, Grodzicki P. Transfer of plant protection products from raspberry crops of Laszka and Seedling varieties to beehives. Environ Monit Assess. 2018, 190(3), 135. https://doi.org/10.1007/s10661-018-6491-z PMID: 29435675
Tong Z, Duan J, Wu Y, Liu Q, He Q, Shi Y, et al. A survey of multiple pesticide residues in pollen and beebread collected in China. Sci Total Environ. 2018, 640–641, 1578–1586. https://doi.org/10.1016/j.scitotenv.2018.04.424
Traynor KS, Pettis JS, Tarpy DR, Mullin CA, Frazier JL, Frazier M, et al. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci Rep. 2016, 6(1), 33207. https://doi.org/10.1038/srep33207 PMID: 27628343
Martel A-C, Zeggane S, Eres C, Drajnudel P, Faucon J, Aubert M, et al. Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar or Asuntol 50. Apidologie. 2007, 38, 53444. https://hal.archives-ouvertes.fr/hal-00892290.
Sanchez-Bayo F, Goka K. Pesticide residues and bees—A risk assessment. PLoS One. 2014, 9(4), e94482. https://doi.org/10.1371/journal.pone.0094482 PMID: 24718419
Perugini M, Tulini SMR, Zezza D, Fenucci S, Conte A, Amorena M. Occurrence of agrochemical residues in beeswax samples collected in Italy during 2013–2015. Sci Total Environ. 2018, 625:470–476. https://doi.org/10.1016/j.scitotenv.2017.12.321/.
Suchail S, Guez D, Belzunces LP. Discrepancy Between Acute and Chronic Toxicity Induced By Imidacloprid and Its Metabolites in Apis Mellifera. Environ Toxicol Chem.,. 2001, 20(11), 2482–2486. https://doi.org/10.1897/1551-5028(2001)020<2482:dbaact>2.0.co;2
Weick J, Thorn RS. Effects of Acute Sublethal Exposure to Coumaphos or Diazinon on Acquisition and Discrimination of Odor Stimuli in the Honey Bee (Hymenoptera: Apidae). J Econ Entomol. 2002, 95(2), 227–236. https://doi.org/10.1603/0022-0493-95.2.227
Yang W, Chang J, Xu B, Peng C, Ge Y. Ecosystem service value assessment for constructed wetlands: A case study in Hangzhou, China. Ecol Econ. 2008, 8. https://doi.org/10.1016/j.ecolecon.2008.02.008
Aliouane Y, el Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M. Subchronic Exposure of Honeybees To Sublethal Doses of Pesticides: Effects on Behavior. Environ Toxicol Chem. 2009, 28(1), 113. https://doi.org/10.1897/08-110.1
Desneux N, Decourtye A, Delpuech J-M. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu Rev Entomol. 2007, 52(1), 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
Bogdanov S. Beeswax: Uses and Trade. In: The Beeswax Book. 2009. p. 1–16.
Bogdanov S. Beeswax: Production, Properties, Composition, Control. In: Beeswax book. Muehlethurnen, Switzerland: Bee Product Science Publishing; 2016. p. 1–17. www.bee-hexagon.net
Waś E, Szczęsna T, Rybak-Chmielewska H. Efficiency of GC-MS method in detection of beeswax adulterated with paraffin. J Apic Sci. 2016, 60(1), 145–161. https://doi.org/doi.org/10.1515/jas-2016-0012
Svečnjak L, Jović O, Prđun S, Rogina J, Marijanović Z, Car J, et al. Influence of beeswax adulteration with paraffin on the composition and quality of honey determined by physico-chemical analyses, 1H NMR, FTIR-ATR and HS-SPME/GC–MS. Food Chem. 2019, 291, 187–198. https://www.sciencedirect.com/science/article/pii/S0308814619306466?via%3Dihub
Tulloch AP. Factors affecting analytical values of beeswax and detection of adulteration. J Am Oil Chem Soc. 1973, 50(7), 269–72. https://doi.org/10.1007/BF02641800
Svečnjak L, Baranović G, Vinceković M, Prđun S, Bubalo D, Gajger IT. An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. J Apic Sci. 2015, 59(2), 37–49. https://doi.org/10.1515/jas-2015-0018
Špaldoňová A, Havelcová M, Lapčák L, Machovič V, Titěra D. Analysis of beeswax adulteration with paraffin using GC/MS, FTIR-ATR and Raman spectroscopy. J Apic Res. 2021, 60(1), 73–83. https://doi.org/10.1080/00218839.2020.1774152
El Agrebi N, Svečnjak L, Horvatinec J, Renault V, Rortais A, Cravedi J-P, et al. Adulteration of beeswax: A first nationwide survey from Belgium. PLoS One. 2021, 16(9), e0252806. https://doi.org/10.1371/journal.pone.0252806 PMID: 34499645
El Agrebi N, Traynor K, Wilmart O, Tosi S, Leinartz L, Danneels E, et al. Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees. Sci Total Environ. 2020, 745, 141036. https://doi.org/10.1016/j.scitotenv.2020.141036
Wilmart O, Legrève A, Scippo M-L, Reybroeck W, Urbain B, de Graaf DC, et al. Residues in Beeswax: A Health Risk for the Consumer of Honey and Beeswax? J Agric Food Chem. 2016, 64(44), 8425–8434. https://doi.org/10.1021/acs.jafc.6b02813
Svečnjak L. Alarming situation on the EU beeswax market: the prevalence of adulterated beeswax material and related safety issues. In: Program and Abstracts Book EurBee 8th Congress of Audiology, Ghent, Belgium, 18–20 September 2018. 2018. p. 114–5.
Bernal JL, Jiménez JJ, del Nozal MJ, Toribio L, Martín MT. Physico-chemical parameters for the characterization of pure beeswax and detection of adulterations. Eur J Lipid Sci Technol. 2005, 107(3), 158–66. https://doi.org/10.1002/ejlt.200401105
Tanner N, Lichtenberg-Kraag B. Identification and Quantification of Single and Multi-Adulteration of Beeswax by FTIR-ATR Spectroscopy. Eur J Lipid Sci Technol. 2019, 121(12), 1–10. https://doi.org/10.1002/ejlt.201900245
Maia M, Barros AIRNA, Nunes FM. A novel, direct, reagent-free method for the detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta, 2013, 107, 74–80. https://doi.org/10.1016/j.talanta.2012.09.052
Chęć MCH, Lszewski KO, Ziechciarz PD, Kowronek PS, Ietrow MP, Orsuk GB, et al. Effect of stearin and paraffin adulteration of beeswax on brood survival. Apidologie. 2021, 52, 432–446. https://doi.org/10.1007/s13592-020-00833-7
Reybroeck W. F trial: effect of the addition of stearic and palmitic acid to beeswax on the development of the worker bee brood [Internet]. 2018. https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/verslag_veldproef_ilvo_2018_eng.pd
Payne AN, Walsh EM, Rangel J. Initial Exposure of Wax Foundation to Agrochemicals Causes Negligible Effects on the Growth and Winter Survival of Incipient Honey Bee (Apis mellifera) Colonies. Insects, 2019, 10(1), 19. https://doi.org/10.3390/insects10010019 PMID: 30626042
Al Naggar Y, Codling G, Vogt A, Naiem E, Mona M, Seif A, et al. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicol Environ Saf., 2015, 114, 1–8. https://doi.org/10.1016/j.ecoenv.2014.12.039
Tosi S, Costa C, Vesco U, Quaglia G, Guido G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci Total Environ., 2018, 615:208–218. https://doi.org/10.1016/j.scitotenv.2017.09.226
Casida JE, Durkin KA. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu Rev Entomol. 2013; 58:99–117. https://doi.org/10.1146/annurev-ento-120811-153645
Gregorc A, Ellis JD. Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pestic Biochem Physiol. 2011, 99(2), 200–207. https://doi.org/10.1016/j.pestbp.2010.12.005
Fisher A, Rangel J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS One. 2018, 13(12), e0208630. https://doi.org/10.1371/journal.pone. 0208630 PMID: 30543709
Dai P, Jack CJ, Mortensen AN, Ellis JD. Acute toxicity of five pesticides to Apis mellifera larvae reared in vitro. Pest Manag Sci. 2017, 73(11), 2282–2286. https://doi.org/10.1002/ps.4608
Dai P, Jack CJ, Mortensen AN, Bustamante TA, Bloomquist JR, Ellis JD. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. Pest Manag Sci. 2019, 75(1), 29–36. https://doi.org/10.1002/ps.5124
Murcia Morales M, Gómez Ramos MJ, Parrilla Vázquez P, Díaz Galiano FJ, García Valverde M, Gámiz López V, et al. Distribution of chemical residues in the beehive compartments and their transfer to the honeybee brood. Sci Total Environ. 2020, 710, 136288. https://doi.org/10.1016/j.scitotenv.2019. 136288
EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance acrinathrin. EFSA J. 2013, 11(12), 3469. http://www.efsa.europa.eu/efsajournal
El Agrebi N, Svečnjak L. Adulteration of Belgian beeswax: a first nationwide survey. PLoS One. 2021, 16(9), e0252806. https://doi.org/10.1371/journal.pone.0252806 PMID: 34499645
Calatayud-Vernich P, Calatayud F, Simó E, Picó Y. Occurrence of pesticide residues in Spanish beeswax. Sci Total Environ. 2017, 605–606, 745–754. https://doi.org/10.1016/j.scitotenv.2017.06.174
Serra-Bonvehí J, Orantes-Bermejo J. Acaricides and their residues in Spanish commercial beeswax. Pest Manag Sci. 2010, 66(11), 1230–1235. https://doi.org/10.1002/ps.1999
Marti JNG, Kilchenmann V, Kast C. Evaluation of pesticide residues in commercial Swiss beeswax collected in 2019 using ultra—high performance liquid chromatographic analysis. Environ Sci Pollut Res. 2022, 0123456789. https://doi.org/10.1007/s11356-021-18363-9 PMID: 35018599
Allan MJ, Dean RR. An integrated system for field studies on honey bees. J Apic Res. 2022, 61(3), 317–319. https://doi.org/10.1080/00218839.2021.2018107
OECD. Guidance document on the honey bee (Apis Mellifera L.) brood test under semi-field conditions. 2007.
Human H, Brodschneider R, Dietemann V, Dively G, Ellis JD, Forsgren E, et al. Miscellaneous standard methods for Apis mellifera research. J Apic Res. 2013, 52(4), https://doi.org/10.3896/IBRA.1.52.4.10
De Smet L., Hatjina F., Ioannidis P., Hamamtzoglou A., Schoonvaere K., Francis F., et al. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sublethal doses of imidacloprid in laboratory and field experiments. PLoS One, 2017, 12, e0171529. https://doi.org/10.1371/journal.pone.0171529 PMID: 28182641
Alix A, Chauzat MP, Duchard S, Lewis G, Maus C, Miles MJ, et al. Chapter 10: Honeybees–Proposed scheme. In: Environmental risk assessment scheme for plant protection products. 2009.
Crailsheim K, Brodschneider R, Aupinel P, Behrens D, Genersch E, Vollmann J, et al. Standard methods for artificial rearing of Apis mellifera larvae. J Apic Res. 2013, 52(1), 15. https://doi.org/10.3896/IBRA.1.52.1.05
De Smet L, Hatjina F, Ioannidis P, Hamamtzoglou A, Schoonvaere K, Francis F, et al. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sublethal doses of imidacloprid in laboratory and field experiments. Riechers DE, editor. PLoS One. 2017, 12(2), e0171529. https://doi.org/10.1371/journal.pone.0171529 PMID: 28182641
Mortensen AN, Ellis JD. A honey bee (Apis mellifera) colony’s brood survival rate predicts its in vitro-reared brood survival rate. Apidologie. 2018, 49(5), 573–580. https://doi.org/10.1007/s13592-018-0584-0
Thompson HM, Levine SL, Doering J, Norman S, Manson P, Sutton P, et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr Environ Assess Manag. 2014, 10(3), 463–470. https://doi.org/10.1002/ieam.1529 PMID: 24616275
El Agrebi N, Steinhauer N, Renault V, de Graaf DC, Saegerman C. Beekeepers perception of risks affecting colony loss: A pilot survey. Transbound Emerg Dis. 2022, 69(2), 579–590. https://doi.org/10.1111/tbed.14023
Barroso-Arévalo S, Vicente-Rubiano M, Puerta F, Molero F, Sánchez-Vizcaíno JM. Immune related genes as markers for monitoring health status of honey bee colonies. BMC Vet Res., 2019, 15(1), 72. https://doi.org/10.1186/s12917-019-1823-y PMID: 30832657
Schlüns H, Crozier RH. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Mol Biol. 2007, 16(6), 753–759. https://doi.org/10.1111/j.1365-2583.2007.00768.x
Bacci L, Pereira EJG, Fernandes FL, Picanço MC, Crespo ALB, Mateus E, et al. Physiological Selectivity of Insecticides to Predator Wasps (Hymenoptera: Vespidae) of Leucoptera coffeella (Lepidoptera: Lyonetiidae). BioAssay. 2006, 1(10), 1–7. www.seb.org.br/bioassay
Leite GLD, Picanço M, Guedes RNC, Gusmão MR. Selectivity of insecticides with and without mineral oil to Brachygastra lecheguana (Hymenoptera: Vespidae), a predator of Tuta absoluta (Lepidoptera: Gelechiidae). Ceiba. 1998; 39(2):191–4.
Dorneles AL, de Souza Rosa A, Blochtein B. Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie. 2017, 48(5), 612–620. https://doi.org/10.1007/s13592-017-0502-x