Article (Scientific journals)
Transfer Learning Approach to Multitarget QSRR Modeling in RPLC.
Kumari, Priyanka; Guilherme, Madureira Sanches Ribeiro; Choudhary, Pratyush et al.
2024In Journal of Chemical Information and Modeling, 64 (19), p. 7447 - 7456
Peer Reviewed verified by ORBi
 

Files


Full Text
kumari-et-al-2024-transfer-learning-approach-to-multitarget-qsrr-modeling-in-rplc.pdf
Publisher postprint (2.93 MB)
Request a copy
Annexes
ci4c00608_si_001.pdf
(532.32 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Quantitative Structure-Activity Relationship; Machine Learning; Chromatography, Reverse-Phase; Experimental conditions; Learning approach; Multi-targets; Performance; Retention time prediction; Reversed phase liquid-chromatography; Reversed-phase liquid chromatography; Small molecules; Target prediction; Transfer learning; Chemistry (all); Chemical Engineering (all); Computer Science Applications; Library and Information Sciences
Abstract :
[en] QSRR is a valuable technique for the retention time predictions of small molecules. This aims to bridge the gap between molecular structure and chromatographic behavior, offering invaluable insights for analytical chemistry. Given the challenge of simultaneous target prediction with variable experimental conditions and the scarcity of comprehensive data sets for such predictive modelings in chromatography, this study introduces a transfer learning-based multitarget QSRR approach to enhance retention time prediction. Through a comparative study of four models, both with and without the transfer learning approach, the performance of both single and multitarget QSRR was evaluated based on Mean Squared Error (MSE) and R2 metrics. Individual models were also tested for their performance against benchmark studies in this field. The findings suggest that transfer learning based multitarget models exhibit potential for enhanced accuracy in predicting retention times of small molecules, presenting a promising avenue for QSRR modeling. These models will be highly beneficial for optimizing experimental conditions in method development by better retention time predictions in Reversed-Phase Liquid Chromatography (RPLC). The reliable and effective predictive capabilities of these models make them valuable tools for pharmaceutical research and development endeavors.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Kumari, Priyanka  ;  Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Biostatistics, biomedicine and bioinformatics ; Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Liège, Belgium 4000 ; Laboratory for the Analysis of Medicines, CIRM, Liège, Belgium 4000
Guilherme, Madureira Sanches Ribeiro ;  Northwestern University, Chicago, Illinois 60208, United States
Choudhary, Pratyush;  Northwestern University, Chicago, Illinois 60208, United States
Van Laethem, Thomas  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) ; Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Liège, Belgium 4000
Fillet, Marianne  ;  Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments ; Laboratory for the Analysis of Medicines, CIRM, Liège, Belgium 4000
Hubert, Philippe  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Sacre, Pierre-Yves  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique ; Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Liège, Belgium 4000
Hubert, Cédric  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique ; Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Liège, Belgium 4000
Language :
English
Title :
Transfer Learning Approach to Multitarget QSRR Modeling in RPLC.
Publication date :
14 October 2024
Journal title :
Journal of Chemical Information and Modeling
ISSN :
1549-9596
eISSN :
1549-960X
Publisher :
American Chemical Society, United States
Volume :
64
Issue :
19
Pages :
7447 - 7456
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
3. Good health and well-being
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This research was funded by FWO/FNRS Belgium EOS-program, grant number 30897864 \u201CChemical Information Mining in a ComplexWorld\u201D, Belgium.
Available on ORBi :
since 24 November 2024

Statistics


Number of views
15 (1 by ULiège)
Number of downloads
1 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi