G. Litjens et al. A survey on deep learning in medical image analysis Med. image Anal. 42 60 88 10.1016/j.media.2017.07.005 28778026
Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems30 (2017).
T. Young D. Hazarika S. Poria E. Cambria Recent trends in deep learning based natural language processing IEE E Comput. Intell. Mag. 13 55 75 10.1109/MCI.2018.2840738
J. Jumper et al. Highly accurate protein structure prediction with AlphaFold Nature 596 583 589 1:CAS:528:DC%2BB3MXhvVaktrrL 10.1038/s41586-021-03819-2 34265844 8371605
Lu, Z, Pu, H, Wang, F, Hu, Z. & Wang, L. The expressive power of neural networks: A view from the width. Adv. Neural Info. Proc. Syst. 30 (2017).
K. Hornik M. Stinchcombe H. White Multilayer feedforward networks are universal approximators Neural Netw. 2 359 366 10.1016/0893-6080(89)90020-8
Y. LeCun Y. Bengio G. Hinton Deep learning Nature 521 436 444 1:CAS:528:DC%2BC2MXht1WlurzP 10.1038/nature14539 26017442
Bubeck, S. et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712 (2023).
H.A. Elmarakeby et al. Biologically informed deep neural network for prostate cancer discovery Nature 598 348 352 1:CAS:528:DC%2BB3MXitV2itrzK 10.1038/s41586-021-03922-4 34552244 8514339
A. van Hilten et al. Gennet framework: interpretable deep learning for predicting phenotypes from genetic data Commun. Biol. 4 1 9
D. Wang et al. Comprehensive functional genomic resource and integrative model for the human brain Science 362 eaat8464 1:CAS:528:DC%2BC1cXisVyhsLnI 10.1126/science.aat8464 30545857 6413328
L. Liu et al. Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data PLOS Comput. Biol. 18 e1010328 1:CAS:528:DC%2BB38XitVWqtLbI 10.1371/journal.pcbi.1010328 35839250 9328574
J. Ma et al. Using deep learning to model the hierarchical structure and function of a cell Nat. methods 15 290 298 1:CAS:528:DC%2BC1cXjvVOlurc%3D 10.1038/nmeth.4627 29505029 5882547
K.Y. Michael et al. Visible machine learning for biomedicine Cell 173 1562 1565 10.1016/j.cell.2018.05.056
S. Bach et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation PloS one 10 e0130140 10.1371/journal.pone.0130140 26161953 4498753
Sundararajan, M, Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In International conference on machine learning, 3319–3328 (PMLR, 2017).
Shrikumar, A, Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. In International conference on machine learning, 3145–3153 (PMLR, 2017).
Ö. Carlborg C.S. Haley Epistasis: too often neglected in complex trait studies? Nat. Rev. Genet. 5 618 625 1:CAS:528:DC%2BD2cXlvVSjt7g%3D 10.1038/nrg1407 15266344
O. Zuk E. Hechter S.R. Sunyaev E.S. Lander The mystery of missing heritability: Genetic interactions create phantom heritability Proc. Natl Acad. Sci. 109 1193 1198 1:CAS:528:DC%2BC38XislWks7o%3D 10.1073/pnas.1119675109 22223662 3268279
R.A. Fisher Xv.—the correlation between relatives on the supposition of Mendelian inheritance Earth Environ. Sci. Trans. R. Soc. Edinb. 52 399 433 10.1017/S0080456800012163
T. Kam-Thong et al. Epiblaster-fast exhaustive two-locus epistasis detection strategy using graphical processing units Eur. J. Hum. Genet. 19 465 471 1:CAS:528:DC%2BC3MXjsVCrsr0%3D 10.1038/ejhg.2010.196 21150885
Gola, D. & König, I. Empowering individual trait prediction using interactions for precision medicine. BMC Bioinformatics22, 74 (2021).
Al-Mamun, H. A, Dunne, R, Tellam, R. L. & Verbyla, K. Detecting epistatic interactions in genomic data using random forests. bioRxiv 2022 – 04 (2022).
X. Chen H. Ishwaran Random forests for genomic data analysis Genomics 99 323 329 1:CAS:528:DC%2BC38XmsF2ksrg%3D 10.1016/j.ygeno.2012.04.003 22546560
A. Orlenko J.H. Moore A comparison of methods for interpreting random forest models of genetic association in the presence of non-additive interactions BioData Min. 14 1 17 10.1186/s13040-021-00243-0
Tsang, M, Cheng, D. & Liu, Y. Detecting statistical interactions from neural network weights. International Conference on Learning Representations. (2018).
P. Greenside T. Shimko P. Fordyce A. Kundaje Discovering epistatic feature interactions from neural network models of regulatory DNA sequences Bioinformatics 34 i629 i637 1:CAS:528:DC%2BC1MXhtVWisrjI 10.1093/bioinformatics/bty575 30423062 6129272
J.D. Janizek P. Sturmfels S.-I. Lee Explaining explanations: Axiomatic feature interactions for deep networks J. Mach. Learn. Res. 22 4687 4740
R.J. Urbanowicz et al. Gametes: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures BioData Min. 5 1 14 10.1186/1756-0381-5-16
D.B. Blumenthal et al. Epigen: an epistasis simulation pipeline Bioinformatics 36 4957 4959 1:CAS:528:DC%2BB3MXht12gtr3E 10.1093/bioinformatics/btaa245 32289146
W. Strober I. Fuss P. Mannon et al. The fundamental basis of inflammatory bowel disease J. Clin. Investig. 117 514 521 1:CAS:528:DC%2BD2sXis12hsbk%3D 10.1172/JCI30587 17332878 1804356
A. Cortes M.A. Brown Promise and pitfalls of the Immunochip Arthritis Res. Ther. 13 101 10.1186/ar3204
D. Ellinghaus et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci Nat. Genet. 48 510 518 1:CAS:528:DC%2BC28XktFeqtLk%3D 10.1038/ng.3528 26974007 4848113
Duroux, D, Climente-González, H, Azencott, C.-A. & Van Steen, K. Interpretable network-guided epistasis detection. GigaSci. 11 (2022).
J.Z. Liu et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations Nat. Genet. 47 979 1:CAS:528:DC%2BC2MXht1WltLvI 10.1038/ng.3359 26192919 4881818
Watanabe, K, Taskesen, E, van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8 http://www.nature.com/articles/s41467-017-01261-5 (2017).
GTEx Consortium. Genetic effects on gene expression across human tissues Nature 550 204 213 10.1038/nature24277 5776756
G. Erion J.D. Janizek P. Sturmfels S.M. Lundberg S.-I. Lee Improving performance of deep learning models with axiomatic attribution priors and expected gradients Nat. Mach. Intell. 3 620 631 10.1038/s42256-021-00343-w
J. Mahachie John F. Lishout K. Steen Model-based multifactor dimensionality reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data Eur. J. Hum. Genet 19 696 703 1:CAS:528:DC%2BC3MXmtlegs7c%3D 10.1038/ejhg.2011.17 21407267 3110049
Cattaert, T. et al. Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise. Ann. Hum. Genet.75(1):78–89.
F.V. Lishout F. Gadaleta J.H. Moore L. Wehenkel K.V. Steen gammamaxt: a fast multiple-testing correction algorithm BioData Min. 8 1 15 10.1186/s13040-015-0069-x
Y. Wu G. Murray E. Byrne Gwas of peptic ulcer disease implicates helicobacter pylori infection, other gastrointestinal disorders and depression Nat. Commun. 12 1:CAS:528:DC%2BB3MXltFKqsbg%3D 10.1038/s41467-021-21280-7 33608531 7895976 1146
X. Li X. Wang G. Xiao A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications Brief. Bioinforma. 20 178 189 1:CAS:528:DC%2BC2sXpt1Oisrw%3D 10.1093/bib/bbx101
Imgenberg-Kreuz, J. et al. Genome-wide dna methylation analysis in multiple tissues in primary sjögren’s syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis Epub 2016 Feb 8.
Imgenberg-Kreuz, J, Rasmussen, A, Sivils, K. & Nordmark, G. Genetics and epigenetics in primary sjögren’s syndrome. Rheumatology (Oxford 14;60(5):2085–2098.
Andersen, V. et al. The polymorphism rs3024505 proximal to il-10 is associated with risk of ulcerative colitis and crohns disease in a danish case-control study.
L. De Lobel et al. A screening methodology based on random forests to improve the detection of gene–gene interactions Eur. J. Hum. Genet. 18 1127 1132 10.1038/ejhg.2010.48 20461113 2987456
D.M. Evans J. Marchini A.P. Morris L.R. Cardon Two-stage two-locus models in genome-wide association PLoS Genet. 2 e157 10.1371/journal.pgen.0020157 17002500 1570380
Pecanka, J. & Jonker, M. A. Two-stage testing for epistasis: screening and verification. Epistasis (ed. Wong, KC.)2212, 69–92 (2021).
Le, T. T, Gong, H, Orzechowski, P, Manduchi, E. & Moore, J. H. Expanding Polygenic Risk Scores to Include Automatic Genotype Encodings and Gene-gene Interactions https://doi.org/10.5220/0008869700790084.
N. Verplaetse A. Passemiers A. Arany Y. Moreau D. Raimondi Large sample size and nonlinear sparse models outline epistatic effects in inflammatory bowel disease Genome Biol. 24 10.1186/s13059-023-03064-y 37798735 10552306 224