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Non-linear interactions among single nucleotide polymorphisms
(SNPs), genes, and pathways play an important role in human
diseases, but identifying these interactions is a challenging task.
Neural networks are state-of-the-art predictors in many do-
mains due to their ability to analyze big data and model com-
plex patterns, including non-linear interactions. In genetics,
visible neural networks are gaining popularity as they provide
insight into the most important SNPs, genes and pathways for
prediction. Visible neural networks use prior knowledge (e.g.
gene and pathway annotations) to define the connections be-
tween nodes in the network, making them sparse and inter-
pretable. Currently, most of these networks provide measures
for the importance of SNPs, genes, and pathways but lack de-
tails on the nature of the interactions. In this paper, we explore
different methods to detect non-linear interactions with visible
neural networks. We adapted and sped up existing methods,
created a comprehensive benchmark with simulated data from
GAMETES and EpiGEN, and demonstrated that these meth-
ods can extract multiple types of interactions from trained vis-
ible neural networks. Finally, we applied these methods to a
genome-wide case-control study of inflammatory bowel disease
and found high consistency of the epistasis pairs candidates be-
tween the interpretation methods. The follow-up association
test on these candidate pairs identified seven significant epistasis
pairs.
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Introduction
Machine learning methods, particularly neural networks,
have been a disruptive technology that has transformed nu-
merous fields in the last decade. Machine learning and deep
learning have completely reshaped the fields of biomedical
image segmentation (1), natural language processing (2, 3),
protein folding (4) and many more. The rise of deep learn-
ing can be attributed to three main factors. First, sufficiently
large neural networks can approximate any function (5, 6).
Neural networks are thus not constrained to linear combina-
tions, but can find and leverage non-linear interactions be-
tween inputs. Secondly, neural networks scale well with data
set size (7). Neural networks thrive in large data sets with
many examples as it allows the network to find complex pat-

terns. Third, neural networks are flexible; their architecture
can be easily modified for different tasks and different types
of data. For the imaging domain, this led to convolutional
neural networks (CNNs) while for natural language process-
ing, transformers have deeply impacted the field (8).

In population-based genetics where there is a large number of
input SNPs, there is a domain-specific trend to embed neu-
ral networks with prior biological knowledge, such as gene
and pathway information, to create sparse and interpretable
neural networks that predict genetic risk (9–13). These in-
terpretable neural networks, coined visible neural networks
(14), provided a solution to the two main challenges for neu-
ral networks for genetic data. The large number of input fea-
tures - up to millions of SNPs - and the need for explain-
able methods. Prior knowledge such as gene and pathway
information is embedded in the neural network architecture
to define which node should connect and which not, result-
ing in a sparse and interpretable neural network. In these
networks, each node represents a biological entity by the in-
puts it groups (e.g. SNPs are grouped by gene). The weights
of the connections represent how predictive these entities (i.e.
SNPs, genes and pathways) are for the final prediction. How-
ever, current methods for interpreting these networks, such
as Layer-wise Relevance Propagation (15), Integrated Gradi-
ents (16) and DeepLIFT (17), only provide the importance
for each entity and do not provide insight in the nature of the
relation between entities. Attributing entities with an impor-
tance score, a single value for each input, provides an incom-
plete view of the decision process. Neural networks thrive
because they can learn (non-linear) combinations of features
and these cannot be expressed by a single importance value.
Thus, for a more complete overview of the decision process
of neural networks and to understand the nature of the rela-
tion between SNPs, genes, and pathways, it is important to
detect and understand which input features interact with each
other in neural networks.

Non-linear effects are ubiquitous in biology. Detecting and
understanding these interactions is necessary to fully model
the complex biological mechanisms that exist between geno-
type and phenotype (18, 19). Detecting interactions between
genes and, in particular, SNPs (epistasis) comes with an in-
herent computational challenge. Following Fisher’s (20) def-
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inition of statistical epistasis, i.e., as a deviation from the ad-
ditive expectation of allelic effects, the possible set of inter-
actions exceeds O(p2), with p the number of features. Thus,
an exhaustive search is computationally unfeasible for a large
number of inputs. In genetics, genome-wide association stud-
ies (GWASes) consider several millions of SNPs and detect-
ing epistasis is thus infeasible to date without extra inter-
ventions to reduce the search space of possible interactions,
due to the sheer number of possible combinations. Fortu-
nately, there is a wide variety of non-exhaustive epistasis de-
tection methods available. Epiblaster (21), takes a two-step
approach that first searches for a smaller number of likely
candidates using correlation before performing full rank lo-
gistic regression to confirm significance. MB-MDR (22), a
non-parametric model often used to detect epistasis, condi-
tions interaction testing on lower order effects. Other ap-
proaches, such as machine learning applications, build a pre-
diction model first and then extract interaction information
from this model. Tree-based classifiers can use the structure
of the trees to find epistasis candidates (23, 24) or use the
prediction model with permuted input data to find interact-
ing features (25). For neural networks, the field of explain-
able AI (XAI) provides many tools that aim to explain the
trained neural network. Most of these tools focus on input
feature attribution and place little emphasis on finding inter-
acting features. However, Greenside et al. (26) showed that
feature attribution methods can be used to find epistasis can-
didates efficiently and Tsang et al. (27) proposed a method
for finding statistically significant feature interactions using
the weights of a neural network.
Combining these methods with visible neural networks might
enhance our understanding of these neural networks and
thereby the underlying biology. In this paper, we evaluate
the performance and consistency of several post-hoc interpre-
tation methods on visible neural networks from the GenNet
framework (10). Primarily, we focus on epistasis detection,
i.e., a pair of SNPs whose combination affects the pheno-
type. After training these networks, we apply: neural inter-
action detection (NID) (27), PathExplain (28) and Deep Fea-
ture Interaction Maps (DFIM) (26) to investigate how well
these methods explain interactions learned by visible neu-
ral networks. Moreover, on the learned network, we analyze
which gene gives a relative local improvement in predictive
power (RLIPP) (13). We compare these methods to literature
epistasis methods, such as light gradient-boosting machine,
Epiblaster and MB-MDR, using simulated data from Epigen
and Gametes. Finally, we apply these post-hoc interpretation
methods to visible neural networks trained on data from the
Inflammatory Bowel Disease Consortium.

Materials
To evaluate epistasis methods in a controlled environment
with known ground truth, we used simulated data from two
different methods: GAMETES (29) for strict and pure epista-
sis models and EpiGEN (30) for more complex simulations.
Finally, we applied the methods to the data from the Inter-
national Inflammatory Bowel Disease Genetics Consortium

(IIBDGC) to test the approaches in human data.

GAMETES is an open-source simulation package to generate
pure and strict epistatic models, thus epistasis models without
linkage disequilibrium and marginal effects but with two loci
contributing to a discrete phenotype in a strictly non-linear
manner. Fourteen different sets of simulations were simu-
lated with varying sample sizes {3000,12000}, heritability
{0.05,0.1,0.2,0.3}, and number of SNPs {25,100,1000}.
An overview of the simulation settings can be found in Sup-
plementary Table table 2.

EpiGEN, on the other hand, is a simulation pipeline built
to simulate more complex phenotypes based on realistic
genotype data. For example, EpiGEN allows the use of
HAPGEN2 to simulate genotype data with similar charac-
teristics (linkage disequilibrium, ethnicity, etc.). Addition-
ally, EpiGEN was used to explore the effects of different
epistasis models and SNPs with marginal effects. Using
HAPGEN2 as a basis, we created simulations with varying
sample sizes {3000,12000}, number of SNPs {100,1000},
interactions models {joint-dominant, joint-recessive,
multiplicative and exponential}, and interaction strength
{3,10,100}. Different interaction models mimic different
structures of the epistasis. An interaction strength of, e.g.,
10, means that an individual with the epistatic pair has 10-
times the risk of someone without. Overall, we generated 384
different simulations: 288 with a marginal background effect
and 96 pure epistasis models where only interaction effects
lead to the response. All simulation parameters for EpiGEN
can be found in Supplementary Table table 3. For in-depth
details on the simulations, we refer to the original paper (30).

IBD dataset. We investigated the IBD dataset from the Inter-
national Inflammatory Bowel Disease Genetics Consortium
(IIBDGC). The data contains cases with non-infectious in-
flammations of the bowel, including Ulcerative colitis (UC)
and Crohn’s disease (CD), the two main categories of IBD
(31). The dataset was genotyped on the Immunochip SNP ar-
ray (32). We performed quality control as in Ellinghaus, et al.
(33), reducing the number of SNPs from 196 524 to 130 071.
The final dataset contained 66 280 samples, including 32 622
cases (individuals with IBD) and 33 658 controls.
Since the IIBDGC dataset aggregates multiple cohorts, con-
founders by shared genetic ancestry is a concern. As in
Ellinghaus et al. (33), we used the first 7 principal compo-
nents to model population stratification. We adjusted the phe-
notypes for epistasis detection methods that cannot include
covariates. The same quality control steps as in Duroux, et al.
(34) were applied. We removed rare variants (MAF< 5%) or
in Hardy–Weinberg equilibrium (p-value < 0.001). All risk
SNPs described in Liu et al. (35) were included.

Methods

Visible neural networks
The GenNet framework (10) was used to create sparse and
interpretable neural networks. These visible neural networks
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Fig. 1. An overview of the post-hoc interpretation methods applied in this study to detect interactions in visible neural networks. (a) Comparing the relative weights of
the one-hot encoded input for each SNP reveals the model that the neural network is using for that particular SNP (e.g linear spaced weights indicate an additive model).
PathExplain applies Integrated Gradients on itself to find the Expected Hessians, which can be used to find interaction between inputs. RLIPP (c) is a method to detect if a
node has non-linear behavior. The activations towards and from this neuron are regressed to the output with linear regression to provide an estimate of the non-linear gain of
that node. (d) NID uses the assumption that edges with strong weights are more likely to interact with each other than edges with low absolute weights. DFIM (e) compares
Deeplift’s attribution scores for all features before and after a feature of interest is perturbed, revealing all features that interact with the feature of interest.

use biological knowledge embedded in the neural network
architecture to define connections between nodes. Figure 1
illustrates the employed neural network architecture. Each
network had a depth of three or four layers, depending on
the input encoding, and was structured according to Figure
1. Several changes were made to the original framework to
improve the neural networks for epistasis detection. First, we
tested one-hot input encoding in addition to the standard (ad-
ditive) input encoding. Secondly, we added multiple filters
for each gene to allow the network to find and use multiple
patterns per SNP and gene, followed by an extra layer to con-
verge back to a single node per gene. For the simulations, the
width of the network (the number of neurons in the layers)
was chosen to be proportional to the input size. More specif-
ically, the number of neurons, the basic computational units
in a neural network, was set to be #SNPs

100 in the gene layer,
with a minimum of five neurons. The learning rate for the
ADAM optimizer and the strength of L1 penalty on the kernel
weights were optimized on the validation set. To reduce the
computational cost, hyperparameters were only optimized for
a single simulation for simulations similar in sample size and
input size. Networks were trained using CPU since the sparse
matrix operations used do not benefit from using a GPU.
For the IBD dataset we used similar neural networks but with
gene annotations from FUMA (36). To map SNP to genes,
both positional and functional annotations were combined.
In the positional annotations, SNP to genes were mapped via
a positional mapping obtained from FUMA’s SNP2GENE
function. A SNP was mapped to a gene when the genomic

coordinates of a variant were within the boundaries of a gene
± 10 kb. For the functional annotations, we used FUMA’s
eQTL mapping that is based on eQTLs obtained from GTEx
(37). An eQTL SNP was mapped to its target gene when
the association p-value was significant in any tissue (FDR
< 0.05). Combined they map 38225 SNPs to 25139 genes
with 126899 connections.

One-hot encoding. The standard genotype encoding {0,1,2}
may introduce a bias to the additive model between genetic
variants and the outcome as it represents an additive model.
Therefore, we train for each application two models. A stan-
dard model and a model with a one-hot encoded input for
the genotype. For this model we modify the first layer of
each network, leading to three inputs per SNP (as shown in
figure 1a). Regular one-hot encoding is widely used in ma-
chine learning to treat categorical variables as numerical val-
ues. In one-hot encoding the three categories that the SNP
can assume: both reference alleles, a reference and an alter-
nate allele, or both alternate alleles are each represented with
a single variable that assumes value 1 if the input individual
has said configuration, and 0 otherwise. We designed a novel
way of using this one-hot encoded input, the three inputs per
SNP are connected to a node representing that SNP in the first
layer of the network. The weights of these connections may
be informative of the genetic model learned by the model for
that SNP.
For an additive model, the expected strength of the weights
should roughly adhere to: W0−W1 'W1−W2. We, there-
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fore, use the ratioRw as a measure for the degree of linearity.
Historically, the additive model is the standard model, and it
has had great success as the underlying model explaining ge-
netic effects. Accordingly, we initialized the weights for each
SNP according to the additive model, which can be seen as
a reference model under Fisher’s epistasis definition. During
training the neural network may freely change the ratio be-
tween these weights, diverging from an additive model. In-
specting the weights and the ratioRw may indicate for which
inputs the model deviates from the additive model. However,
it is important to note that the model may learn more complex
models using subsequent layers of the network, thus additive
weights in the first layer do not exclude the possibility of a
deviation of an additive model.

Neural interaction detection (NID) (27) is a method to de-
tect statistical interaction pairs in neural networks that works
on the premise that relevant interacting features have large
weights assigned. Pairs of features are ranked according to
the strength of the weights connecting to the neuron and the
importance of the neuron (defined by the weights of its suc-
cessive connections). Adapting this algorithm to visible neu-
ral networks is straightforward, as the mathematical interpre-
tation is unchanged. The most likely interaction candidates
are the combinations of the absolute weights that result in
the highest value. Multiplying this value with the importance
of the node, expressed by a multiplication of all the weights
between the node and the output node, results in the final in-
teraction score.

NIDgene = Zj ∗min(|Wcand(1)|, |Wcand(2)|) (1)

with Wcand as a matrix sorted by the absolute weights per
gene and Zj as the importance of the gene node (resulting
from a multiplication of the absolute weights of all nodes be-
tween the selected node and the output).

Deep Feature Interaction Maps (DFIM) (26) assumes that per-
turbing a feature will result in a change in attribution score for
a feature that is interacting with the perturbed feature. DFIM
uses DeepLIFT (17) to get attribution scores before and af-
ter mutating a variant and saves this difference in attribution
score as the feature interaction score (FIS). Since a single
DeepLIFT call provides the attribution scores for all variants,
only two calls are necessary to gain all the feature interac-
tion scores for all the unperturbed (target) features. In this
work, we perturb the hundred most important features iden-
tified by DeepLIFT and save the feature that has the highest
FIS score, however a larger number of features can be saved
if one suspects more interactions per feature.

PathExplain (28) uses the Expected Hessians for identify-
ing interacting features. We apply PathExplain on the hun-
dred most important features identified with expected gradi-
ent (38), the build-in feature importance method of PathEx-
plain. For an input x, the feature interaction score (FIi,j(x))
is obtained using Integrated Gradients (φ) (16) applied on it-
self in order to explain the degree to which feature i impacts

the importance of another feature j:

FIi,j(x) = φj(φi(x)) (2)

Thus, where DFIM mutates a feature and finds the change in
importance for other features using the gradients in Deeplift,
PathExplain directly finds the change in gradients by com-
puting the expected Hessians.

Relative local improvement in predictive power (RLIPP) (13)
is a method to detect in which nodes of the neural network
statistical interactions occur. It compares the difference in
predictive performance of a specific neuron’s inputs and out-
puts. The activations towards and from this neuron are re-
gressed to the output with linear regression. In the original
paper, the Spearman correlation was used to measure the per-
formance gain for a regression task. We modified the algo-
rithm in two ways to adjust it for the classification problem
at hand. We compare the adjusted R2 of the two models and
calculate RLIPP as:

RLIPPn,l =
R2
pa−R2

ch

R2
ch

. (3)

For GenNet’s networks for each node (n) and for each layer
(l), the phenotype based on its’ activations (Parent, pa) and
all the incoming edges, i.e., the weighted SNPs defining the
node (Child, ch).

Baseline methods
To compare the neural network to more traditional solutions,
we use different epistasis detection models with different un-
derlying mechanisms: LGBM, MB-MBDR and Epiblaster.

Light gradient-boosting machine (LGBM) (39) is a classifi-
cation model using gradient boosting decision trees. Light
gradient-boosting machine (LGBM) is an open-source gra-
dient boosting framework that is designed to be efficient
and scalable, making it well-suited for large datasets and
high-dimensional problems. LGBM is particularly effec-
tive for handling large datasets with a large number of fea-
tures, as it is able to handle missing data and categorical
features efficiently. Two techniques distinguish LGBM from
other gradient-boosting decision tree classifiers. Gradient-
based one-side sampling allows LGBM to grow decision
trees faster than traditional approaches, while also reducing
overfitting and exclusive feature bundling to handle categor-
ical features without the need for one-hot encoding, further
reducing the memory usage and training time. We evaluated
both feature importance as well as an unpublished feature in-
teraction detection method (40), used in a Kaggle competi-
tion to predict customer transactions.

Epiblaster (21) is an algorithm that employs a two-stage ap-
proach to detect epistasis and generate a ranked list of SNPs
with associated scores and adjusted p-values. The algorithm
uses a combination of quasi-likelihood and linear models,
such as linear regression or logistic regression depending on
the output. In the first stage, an exhaustive filtering process is
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performed on all SNP pairs using the difference of Pearson’s
correlation coefficient to rank them rapidly. In the second
stage, only the top-k SNP pairs are selected, and a more ac-
curate linear model with a real likelihood is used to compute
the real p-value and test statistic. The p-value associated with
the Beta is the measure of the association, and since multi-
ple testing is performed, adjustment is needed. The retrieved
p-value, adjusted for multiple testing, was used to rank the
found SNP pairs.

MB-MDR (22) can identify genetic interactions in various
SNP-SNP based epistasis models. The algorithm exhaus-
tively explores the association between each SNP pair and the
phenotype, using all available cases. It is a non-parametric
method, in the sense that it makes no assumptions about the
modes of interaction inheritance. The model-based part of
MB-MDR refers to the ability to condition interaction test-
ing on lower-order (main) SNP effects. For additional infor-
mation and performance results, we refer to (41, 42); Such
works report about the significance of interactions are cor-
rected for multiple testing, using a step-down maxT inspired
algorithm, controlling family-wise error rates (Type I errors).
Exact permutation-based significance assessment is replaced
by approximate such computations via the gammaMAXT al-
gorithm as described in (43). By default, approximations are
invoked when the number of input SNPs, to interrogate for
interactions, exceeds 10,000.

Evaluation metrics
The Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) is a popular metric used to evaluate the perfor-
mance of binary classifiers. The ROC curve is created by
plotting the true positive rate (TPR) against the false positive
rate (FPR) for different thresholds. The AUC is simply the
area under the ROC curve, ranging from 0 to 1, with an AUC
of 0.5 representing a model equal to random guessing. We
use the AUC to evaluate the classification performance of the
neural network.

The Area Under the Precision-Recall Curve (prAUC) is a use-
ful metric to assess classifiers when there is a large imbalance
between the classes. A high prAUC represents both high re-
call and high precision, where high precision relates to a low
false positive rate, and high recall relates to a low false nega-
tive rate. The prAUC is used to evaluate epistasis detection.

Simulation Results
We evaluated the performance and the consistency of inter-
pretation methods for finding non-linear interactions with
visible neural networks and compared these to more tradi-
tional approaches such as Epiblaster, MB-MDR and LGBM.

GAMETES
The heritability value used in generating the simulations and
the ease of detection, the difficulty based on the penetrance
tables, had a clear impact on the predictive performance in
the expected directions (see Supplementary Figure 5). To

evaluate whether the post-hoc interpretation methods can ex-
tract the learned interactions in neural networks, we exam-
ined only simulations for which both types of neural net-
works found a predictive pattern, i.e., models with an AUC
higher than an AUC of 0.5 in the test set (142/280).
Overall, the best interpretation method for the GenNet net-
works was DFIM with an average prAUC of 0.70 over all
runs, followed by PathExplain (prAUC of 0.68) and NID
(prAUC of 0.63) see (Figure 2a). There were strong cor-
relations (Pearson correlation coefficients between 0.62 and
0.64) between the predictive performance of the neural net-
work (AUC of the test set) and the ability of the interpretation
networks to capture epistasis (e.g., DFIM prAUC). Figure 2b
further dissects the relation between predictive performance
and the ability of the interpretation methods to detect epis-
tasis. In this figure, the performance of the various methods
(NID, DFIM and PathExplain), are reported separately if they
were trained with or without the one hot encoding. More-
over, it can be observed (Figure 2b) that for all networks with
a prediction AUC of 0.6 or higher, DFIM and PathExplain
achieved a prAUC of 0.98 and 0.95, respectively, with better
results on the network without the one hot encoding. Inter-
preting the visible neural networks with NID resulted in a
respectable prAUC of 0.89 for the same AUC threshold.
There were negligible differences between standard GenNet
networks and networks with a one-hot encoding in terms of
classification performance. The networks with one-hot en-
coding did perform slightly better (average AUC of 0.64 vs
0.63) but the performance of the interpretation methods was
worse, most noticeable for DFIM, where the average prAUC
was 5 percent points lower for networks with the one hot en-
coding compared to networks that did not have the encoding.
In addition, we performed simulations to investigate if these
interpretation methods can find interaction between genes
(gene-interaction). In these simulations the epistasis pairs
are located in different genes. Classification performance
was poor and dropped significantly compared to simulations
where the interacting variants were in the same gene (see
Supplementary Figure 6).
Baseline methods performed very well on GAMETES.
LGBM slightly outperformed the neural networks in clas-
sification performance and for epistasis detection MBMDR
outperformed the neural network interpretation methods in
most simulations. Epiblaster achieved an average prAUC of
0.80 over all the simulations. Figure 2c displays the correla-
tion between the results of these methods. We find a strong
correlation (Pearson) between the predictive AUC of GenNet
(blue), with the prAUC of the DFIM; NID and PathExplain.
The same is true between the AUC of prediction AUC and
the epistasis prAUC of LBGM.

EpiGEN
The EpiGEN simulations were designed to investigate the
behavior of the models for more realistic simulations with
marginal effects and different interaction models. The inter-
action model strongly affects the classification performance
of the GenNet models (see Supplementary Figure 7). Net-
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Fig. 2. GAMETES: In a) the prAUC with the confidence interval of of the various epistasis interpretation methods.In b), the average of the prAUC for methods for different
thresholds of prediction AUC in the test set. There is a clear trend showing better prAUC given better prediction AUC. In c), the correlation plot shows the correlation between
the price of various methods and the prediction AUC of the NN and LGBM (AUC NN; AUC NN OneHot; AUC LGBM).
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Method Main category Test conditional Covariates Imputation Detect direct
on main effects adjustment required interactions

Epiblaster (21) Statistical Yes No Yes P-value
LightGBM (39) ML No No No Interaction strength
MB-MDR (43) Dimensionality reduction Yes Yes No P-value

NID (27) ML, statistical Yes No Yes Interaction strength
DFIM (26) ML No No Yes Interaction strength

PathExplain (28) ML No No Yes Interaction strength

Table 1. Properties of the different epistasis detection algorithms used and associated input. In detail, we describe the main category they belong to; if the test they perform
is conditional on main effects; if they can naturally consider covariates, if the missing SNPs need to be imputed, and the type of epistasis score they yield.

works performed best in simulations using a multiplicative
model, followed by exponential and joint-dominant models.
Joint-recessive interaction models were the hardest types of
interactions to capture in these sparse neural networks. In
comparison to the GAMETES simulations, the performance
difference between simulations with interacting pairs in the
same gene versus interacting variants in different genes, was
less pronounced, possibly due to the presence of marginal
effects (Supplementary figure 7). The number of inputs
and training-set size were clearly affecting predictive perfor-
mance (Supplementary Figure 9).
To investigate the performance of the epistasis methods, we
considered the subset of trained networks that achieved an
AUC of 0.5 or higher for both types of networks. Figure
?? shows the average performance for each interpretation
method. Predictive performance and interpretation perfor-
mance were generally better for neural networks with a one-
hot encoding than their corresponding networks without one
hot encoding (see also Supplementary Figure 8 and 10). We
found a similar positive trend as in the GAMETES simulation
between prAUC and the AUC of the prediction 3c for all the
neural network interpretation methods. However, thanks to
the marginal effect, the neural networks can achieve a higher
AUC with a poorer prAUC. Inspecting figure 3c shows that,
for the same prediction AUC threshold, the prAUC is gener-
ally lower than in the GAMETES simulation (Figure 2c).
Inspecting the one-hot encoding reveals that the networks
did encode the interaction models differently. Supplemen-
tary Figure 13 shows the deviations from linearity Rw per
interaction model. The distribution deviates the most for the
joint-dominant weights; causal joint-dominant pairs’ weights
plateau for dosage input values 1 and 2, making them clearly
separable from random or marginal weights (Supplementary
Figure 14). Multiplicative and exponential weights were
stronger for all inputs, but this was indistinguishable from
the weight distribution for the one-hot encoding for variants
with marginal effects. The weights distribution for the joint-
recessive variants was most similar to those of random vari-
ants without any effects.
The best performing algorithm was LGBM; LGBM detects
epistatic pairs with high prAUC in simulations with exponen-
tial, joint-dominant, and multiplicative interactions models
3b. All models struggle to detect epistatic pairs in simulations
with an underlying joint-recessive model. For joint-recessive
models LGBM is only second to MBMDR (MBMDR aver-
age prAUC for joint-recessive: 0.39). However, MBMDR
and Epiblaster are unable to detect multiplicative pairs.

Application to the IBD Dataset
To showcase the potential of our approaches in real-life data,
we applied the methods to the IBD dataset with 66 280 ob-
servations and 38 825 SNPs after preprocessing. We divided
the data into train (65%), validation (20%) and test (15%).
Neural networks were created using GenNet command line
functionality and both positional and functional annotations.
As a result, a SNP can be linked to multiple genes. The co-
variates are inputs to the last hidden layer, before the final
prediction. We built neural networks with and without one-
hot encoding and achieved good predictive performance, with
an AUC of 0.745 (0.715, for the one hot) in the validation set
and 0.793 (0.761) in the test set.

Interaction detection in visible neural networks
RLIPP provides insight into which parts of the network the
largest non-linearities can be found. We found that the node
representing the gene CCL11 had the highest relative im-
provement (see Supplementary Figure 11). LYPLAL1-DT
and SNX2P1 had the highest RLIPP values for the neural net-
work trained with the one-hot embedding (see Supplemen-
tary Figure 12).

NID, DFIM, and PathExplain The top epistasic pair (hit)
of NID, for both the network built with and with-
out the one hot encoding, was rs2066844-rs2066845,
both missense variants in the NOD2 gene and leading
causal variants of Crohn’s disease and IBD in both Dis-
GeNet and SNPedia databases (https://www.snpedia.com and
https://www.disgenet.org). PathExplain, on the neural net-
work with the one hot layer, had the SNP rs2066844 (NOD2)
as part of the top epistasic pair together with rs5743293
(NOD2), a frameshift variant, related to both Chron’s disease
(vda score = 0.83) and IBD (vda score 0.02). rs5743293 is
particularly important for PathExplain one hot, as it is a hub
involved in all the top-100 interactions. DFIM (on the net-
work with one hot), showed the same behaviour, having a
SNP, rs12946510, involved in 99 out of the top 100 inter-
actions. rs12946510 (IKZF3, GRB7) is an intergenic vari-
ant associated to Crohn’s disease, IBD and Ulcerative coli-
tis, as per the GWAS catalog. DFIM’s, on the one-hot neu-
ral network, top epistasic pairs involve rs12946510 (IKZF3,
GRB7) with rs2066844 and rs2066845, both previously de-
scribed. A list of the top SNP-SNP interactions for NID can
be found in Supplementary Table 5 for the network without
the one hot encoding layer and in Supplementary Table 4 for
the network with the one-hot layer.
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Fig. 3. EPIGEN: In a), the mean prAUC of the various methods are compared, with the confidence interval displayed. In b), the mean prAUC of each method is displayed per
type of interaction. In c), each dot is the average of the prAUC for methods that have a prediction AUC equal or greater than the number on the x-axis.
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The top interaction in DFIM, in the network without the
one-hot encoding, was between rs80174646 (intron variant,
IL23R) and rs11805303 (intron variant, C1orf141/IL23R);
both previously reported in association with Chron’s disease
and IBD. (GWAS catalog). The second strongest interac-
tion was between rs9988642 (IL23R) and rs11403745 (in-
tergenic, LINC014675). The former is a downstream gene
variant, mapped to the IL23R gene, a protein-coding gene as-
sociated with Inflammatory Bowel Disease. rs11403745 is an
intergenic variants whose closest gene is LINC01475, a non-
coding gene. Nearby is also SEC31B, which has been asso-
ciated to IBD. rs11403745 (intergenic, LINC014675) is also
the SNP most present, 24 times, in the DFIM’s top 100 in-
teractions. The same variant (rs11403745) is also part of the
second top association in NID (on the network trained with
the one-hot layer), together with rs5743293 (NOD2), the hub
SNP in PathExplain. Interestingly, a recent study highlighted
rs11403745 in relation to IBD (44). rs9988642 (IL23R) and
rs80174646 (intron variant, IL23R), part of the top and sec-
ond interaction in DFIM (without one hot encoding layer),
are also the second-highest interaction of NID without one
hot encoding.
PathExplain on the network with the one-hot encoding de-
tected the strongest interaction between rs9296009 (inter-
genic, closest are PRRT1, FKBPL) and rs2413583 (inter-
genic, RPL3, PDGFB). While the former has not been re-
ported in the literature, rs2413583 has been associated with
Chron’s disease, IBD, and ulcerative colitis, according to the
GWAS catalog. Moreover, rs5743293 (NOD2) is the SNP
most present, 26 times, in the top 100 interaction; it was part
of all top 100 interactions of PathExplain with one hot layer
and in the second position using NID on the network with the
one-hot layer.

LGBM

There was no straightforward way to incorporate con-
founders into LGBM. Hence, we first regressed the pheno-
type with the 7 PCs with a linear model, subsequently using
LGBM with the residuals as the outcome. LGBM provides
both the feature importance and the interaction importance
rankings for SNPs. Table 6 and 7 show the top-10 hits and the
complete ranking can be found in Supplementary 6. More-
over, the most important feature according to feature impor-
tance, rs2066844 (NOD2), is known to be the leading causal
variant of Crohn’s disease. The top 3 features per LGBM’s
feature importance, rs2066844, rs5743293, and rs2066845,
are all linked to gene NOD2 and all associated with both IBD
and Chron’s disease. Remarkably, out of the top-10 hits, 9 of
them were already known in the literature to be associated
with both Chron’s and IBD. The only hit not present in Dis-
GeNet, rs11403745 (intergenic, LINC014675) has been re-
cently associated to IBD and has been extensively discussed
in the previous subsection.
For the LGBM’s interactions score, the top two SNP-SNP
pairs involved rs5743293 (NOD2), first with rs80174646
(IL23R); and then with rs2066844 (NOD2). All three SNPs
are known in the literature and have been found and described

by the various neural network interpretation methods above.
Overall, out of the top-10 SNP-SNP interactions, all but one
SNPs are present in DisGeNet, for either IBD or Chron’s dis-
ease. The majority of them are mapped to either IL23R or
NOD2. The single SNP that is not present in DisGeNet is
rs11403745 (intergenic, LINC014675).

Rank aggregation and shared variants
Overall, we investigated the accordance and the peculiarities
of each method on the IBD data for a broader picture of the
agreement and disagreement of each interpretation method.
We only calculated the interactions for the hundred most pre-
dictive variants for the DFIM and Pathfinder, restricting the
search space, to reduce the computational burden.
First, we ranked every variant from NID, DFIM, PathExplain,
both with and without one hot encoding layer, and LGBM,
resulting in eight different rankings. For each method, the
variant’s score is calculated as the sum of the interaction
score (i.e., NID score, DFIM score, LGBM score,..) of ev-
ery pair containing the variant. A comparative study from
Li et al., (45) guides us toward using the geometric mean
of the rankings. In this analysis, variants not present in a
particular method, i.e., outside of the top-100 for DFIM and
PathExplain, were assigned the lowest rank plus one. The ge-
ometric mean of the ranking of the eight methods highlights
rs2066844, rs2066845, and rs5743293 (all NOD2 variants),
as the top hits. Such variants were consistently present as
top variants in each different method, with rs2066844 and
rs2066845 ranked top-10 in 6/8 methods, with the only ex-
ceptions being 1) DFIM built without one hot layer and 2) the
NID with the one hot layer.
Of the top-10 ranked hits, nine are already linked to either
Chron’s disease (9) or IBD (7) in DisGeNet. The other hit
is rs11403745, recently related to IBD (44). Another rele-
vant SNP, in the top-100 in 7 out of 8 methods is rs9271588,
a variant in the HLA region, that has been extensively stud-
ied in autoimmune disease and particularly Sjögren’s disease
(46, 47). The full ranked table is available in the Supplemen-
tary Materials.
Furthermore, we plotted for each method the top 100 vari-
ants, the most promising candidates for epistasic effects, in
an UpSet plot (Fig. 4a). To immediately visualize the adher-
ence of our hits with the literature, we also included the list of
SNPs associated with Chron’s and IBD present in DisGeNet
that are part of our 38,825 pool of input SNPs, respectively
314 and 228.
From this UpSet plot it can be seen that the top-100 hits com-
bining all methods have a high overlap with the known hits
in DisGeNet. LGBM’s feature importance (LGBM 1d) and
epistasis detection (LGBM 2d) had the biggest overlap with
> 40 out of the top-100 hits present in the DisGeNet hits
for both Chron’s disease and IBD, respectively 62 and 55 for
Chron’s and 52 and 45 for IBD. NID methods have around
20 hits, with, for NID NonOneHot and OneHot, respectively
23 and 24 in Chron’s disease and 17 and 21 in IBD. DFIM
and Pathfinder have similar results, with the lowest number
of hits belonging to DFIM NonOneHot on the IBD list, with
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Fig. 4. UpSet plot showing the intersections of our eight interpretation approaches (7 Epistasis methods: NID; DFIM; Pathfinder with/wihtout the one hot module, and LGBM’s
feature interaction measure; plus LGBM feature importance) with the known variants from DisGeNet for IBD and Chron’s disease. Each standing bar shows the number of
overlapping pairs between the highlighted method(s). In a), For each approach, the top-100 SNPs with the highest importance score were evaluated. The horizontal bar
represents the number of SNPs included in each analysis, whereas the vertical bars show the overlap between each analysis; In b) the top-100 SNPs were mapped to gene
positionally (as explained in the method section), and the intersection is showed. Finally, in c) the shared genes between at least one approach and one DisGeNet list are
highlighted.
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only 12 hits.
Out of the considered methods, DFIM and PathExplain on
the one-hot encoded network were the ones with the most
unique hits, with DFIM having almost half of the variants in
the top-100 not being in the top-100 of any other method or
a known SNP from DisGeNet. On the other side of the spec-
trum, PathExplain on the NonOneHot and LGBM’s feature
importance had the lowest number of unique hits.
Three variants were in the top-100 of all the mentioned
methods, respectively rs2836878 (intergenic, RPL23AP12
and LINC02940), rs3024505 (upstream of IL10; close to
Y_RNA), and rs10781499 (CARD9), with known associ-
ation to IBD and Chron’s disease. The first is an inter-
genic variant, while the last is synonymous. Interestingly,
in the GWAS catalog there are multiple studies linking
rs10781499 to IBD disease, Ulcerative colitis and Chron’s
disease. rs2836878 has also been associated with IBD, Ul-
cerative colitis, and Chron’s disease, as per the GWAS cata-
log. Finally, a study on a Danish cohort suggests a link be-
tween rs3024505 and the risk of Chron’s disease (48).
By mapping the top-100 SNPs to gene positionally (+/-
10kb), we saw the overlap between methods and literature’s
known hits (Fig. 4b). We found that eight relevant genes
for both Chron’s and IBD (Y_RNA; RPL23AP12; NOD2;
LINC02943; IL23R; IL10; CARD9; C1orf141) have at least
one SNP mapped to them in each method (Fig. 4c).

Association analysis for candidates pairs
We verified the findings from our previous methods with the
most popular framework in epistasis detection, namely a lo-
gistic regression (LR). We grouped the top-100 SNP pairs
from each of the seven epistasis methods. Hence, we ran a
logistic regression to predict the phenotype using each pair of
SNPs. The formula is, for a pair of SNPs SNPi and SNPj ,
as follows:

logit(Y ) =β0 +β1SNPi+β2SNPj +γSNPiSNPj+
α1PC1 + ...+α7PC7 + ε

Where the PCs are the seven principal components to model
population stratification. Hence, the γ coefficient reflects the
epistasis interaction between a pair of SNPs. To avoid inflat-
ing the results, we ran logistic regression on the validation
and test set combined, excluding the training examples that
the network has seen.
Repeating the regression estimation for all pairs identified
with the epistasis detection methods, we identified 7 signif-
icant SNP pairs after Bonferroni correction (Supplementary
Table 8); out of those, two would stay significant under the
usual GWAS threshold of 5∗10−8.

Discussion
We adapted and applied various post-hoc interpretation meth-
ods to reveal the interactions learned by (visible) neural net-
works. Generally, we found that NID, DFIM and PathEx-
plain are all suited to detect learned interactions from neural

networks. There was a strong correlation between the predic-
tive performance (AUC) and the ability of these interpretation
methods to detect epistasis in the simulations (prAUC). That
is, a neural network needed to have identified and learned
the correct interactions before an interpretation method can
extract it. There was no clear "best" interpretation method
and the best interpretation method depends on the setting.
In the GAMETES simulations, PathExplain performed best,
while neural interaction detection (NID) was the best per-
forming interpretation method for neural networks in most of
the EpiGEN simulations. In the application to the inflamma-
tory bowel disease, we found high agreement between the in-
teraction interpretation methods. Interestingly, most variants
identified by the interpretation methods were known variants
earlier implicated in inflammatory bowel disease. From the
candidate pairs identified with the interpretation methods on
the neural networks and LGBM, 7 are significantly associated
with IBD in the validation and test set.

In GAMETES, we empirically found that networks that
achieved a classification AUC higher than 0.60 reliably de-
tected interactions with most post-hoc analyses. Further-
more, the simulations revealed that interactions between vari-
ants located in different genes are hard to capture. The Epi-
GEN simulations confirmed both these findings and revealed
that the ability to capture and detect epistasis pairs depends
strongly on the underlying interaction model. Pairs based on
a exponential model were consistently captured while pairs
based on joint-recessive models were hard to model and de-
tect. Increasing the depth of the neural networks, for exam-
ple by adding pathway layers (10), may help with providing
the networks with the necessary capacity to model interacting
variants in different genes and with more complex interaction
models.

There are large methodological differences between the
methods employed in the simulations. The machine learn-
ing methods (neural networks and LGBM) optimize towards
finding a good classification boundary, whereas MBMDR
and Epiblaster are primarily designed to test for interaction
effects. This could be an advantage for the simulations, as
these methods align more closely with the process used to
simulate the data and outcome. Both Epiblaster and MB-
MDR can, however, be used in prediction models as part of a
broader pipeline. For instance, prediction can be achieved via
1) separating into training/test, 2) identifying (on the training
set) the hits, both main effect and SNP-SNP pairs, 3) creating,
for each observation, a weighted average of the hits’ effect;
notable examples in the literature are (49), where MBMDR
is used to build multilocus risk score (MRS) and MBMDRc
(22), where the average trait for each SNP combination is av-
eraged to build the prediction. It involves a generic strategy
that could also be applied to other epistasis detection tools
that do not readily provide predictions (such as Epiblaster).
Hence, a notable difference is that in ML approaches predic-
tion precedes the interpretation, while in epistasis tools it is
the contrary.

In the IBD case-control setting, we achieved good predictive
performance with both GenNet and LGBM. Interpretation re-
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vealed many variants that have been implicated to have a role
in biological mechanisms underlying inflammatory bowel
disease. This is likely a consequence of the initial filtering,
narrowing the interaction interpretation down to pairs with at
least one predictive SNPs in DFIM and PathExplain. NID did
not require a filtering step as it is computationally cheap but
the method inherently focuses on the variants with the high-
est weight. The most significant epistatic pairs are mapped
to NOD2 variants (rs2066844, rs2066845,rs5743293) and
IL23R variants (rs80174646). We confirm the recent find-
ing of SNP rs11403745 (intergenic, LINC014675) for IBD,
and propose variant rs9271588 (HLA region), as a candidate
for further validation, being in the top-100 of 7/8 methods.

Recently, Verplaetse et al. (50) applied biologically mean-
ingful sparse neural networks on whole exome sequencing
data to predict IBD. The authors achieved similar predictive
performance but did not find convincing proofs for epistasis
when comparing their performance to that of linear models.
Here, we showed that by applying interpretation methods to
the visible neural network we can detect epistasis. The re-
duced candidate set compensates with a lower multiple test-
ing burden and thus more power, even-though half of the data
is allocated for training the network and is thus unavailable
for association analysis. Missing heritability is still a relevant
problem for IBD and Zuk et al. (19) showed that up to 80%
of the missing heritability could be due to genetic interac-
tions. We detected 7 significant epistasis pairs in the real-life
data but the simulations demonstrated that detecting epistasis
pairs in different genes was difficult for the employed neural
network architecture. Increasing the capacity of the neural
networks to model these pairs could be a promising road for
improving this strategy for epistasis detection.

We introduced several additions to the GenNet framework
all of which, including the interpretation methods, are avail-
able from command line in the GenNet framework ( https:
//github.com/ArnovanHilten/GenNet). We introduce
multiple filters for visible neural networks, akin to channels
in convolutional neural networks, and provide the option for
an one-hot encoding for dosage input as a strategy to deal
with the implicit bias to an additive model. With this encod-
ing, the network is not forced to adhere to an additive model
from the first layer and it is free to search for the encoding
most suited for each single SNP. The one-hot encoding did
result in minor performance gain in the EpiGen simulations
and inspecting this layer revealed different weight distribu-
tions patters for the interaction models.

Here, we have demonstrated that interpretation methods for
neural networks can identify non-linear interactions between
genetic variants (epistasis pairs) in both simulated and real-
life data. Most popular interpretation methods for neural net-
works provide a single importance (attribution) score per in-
put, but this is inevitably a linear simplification of the true
importance. Deep learning applications can model non-linear
interactions and thereby provide a performance gain over lin-
ear models. In order to justify the use of these non-linear
models it is thus necessary to use interpretation methods that
can identify the non-linearities that lead to this performance

gain. This does not only apply to epistasis; all tasks where
neural networks are employed to leverage non-linear interac-
tions can benefit from these interpretation methods.

Conclusion
We demonstrated that interpretable neural networks can learn
and detect epistasis using both simulated and real-life data.
Moreover, we provided a comprehensive tool set and a novel
strategy to interpret genetic interactions with visible neural
networks.
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Supplementary Figures 1: GAMETES

Fig. 5. Boxplot of the predictive performance in area under the curve for the GenNet neural networks on the Gametes simulations for the different EDM and heritability
parameters. EDM is a difficulty parameters of GAMETES.

Fig. 6. Boxplot of the predictive performance in area under the curve for the GenNet neural networks on the different Gametes simulations for the simulations with the
interacting pair in the same gene and simulations with the interacting variants in a different gene (gene-interaction). See Supplementary Table 2 for the simulation specifications
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Supplementary Figures 2: EpiGen

Fig. 7. Predictive performance (AUC on the test set) of the GenNet models for various interaction models in EpiGen simulations colored by gene-interaction

Fig. 8. Predictive performance (AUC on the test set) of the GenNet models for various interaction models in EpiGen simulations colored by GenNet model.
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Fig. 9. Predictive performance (AUC on the test set) of the GenNet models for various input and training sizes

Fig. 10. Predictive performance, AUC on the test set, of the GenNet models for various input and training sizes
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Supplementary Figures 3: RLIPP IBD dataset

Fig. 11. Normalized relative local improvement in predictive power (RLIPP) calculated for all gene nodes for the standard (additive) encoding of the neural network.

Fig. 12. Normalized relative local improvement in predictive power (RLIPP) calculated for all gene nodes the neural network with the one-hot encoding.
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Fig. 13. Boxplot with the deviations from linearity, calculated from the one-hot weights, for each interaction model. Significance is denoted on top (one way anova, p < 0.05)
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Supplementary Figures 4: Epigen, one-hot encoding analysis

Fig. 14. Weight distributions the one-hot encoding for the interaction models and all networks with an AUC > 0.6. Each columns show the causal variants, marginal variants
and variants without effects, respectively. Each row shows the underlying interaction models for that simulation.

van Hilten and Melograna et al. | Detecting Genetic Interactions with Visible Neural Networks bioRχiv | 19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.27.582086doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582086
http://creativecommons.org/licenses/by-nc-nd/4.0/


SNP1 SNP2 strength Gene SNP1 SNP1
Position

Consequence
SNP1

Score VDA
Chron SNP1

Score VDA
IBD SNP1 GENE SNP2 SNP2

Position
Consequence

SNP2
Score VDA

Chron SNP2
Score VDA
IBD SNP2

rs2066844 rs2066845 0.008271 NOD2 16:50745926 missense 1 0.79 NOD2 16:50756540 missense 1 0.1
rs5743293 rs11403745 0.007339 NOD2 16:50763781 frameshift 0.83 0.02 10:101282605

rs80174646 rs9988642 0.007327 IL23R 1:67708155 intron 0.7 IL23R 1:67726104 downstream gene 0.8
rs11403745 rs8079894 0.007039 10:101282605 HS3ST3A1 17:13868041
rs5743293 rs8079894 0.007039 NOD2 16:50763781 frameshift 0.83 0.02 HS3ST3A1 17:13868041

rs11403745 rs9646893 0.006711 10:101282605 ANKMY1 2:241466936
rs5743293 rs9646893 0.006711 NOD2 16:50763781 frameshift 0.83 0.02 ANKMY1 2:241466936
rs8079894 rs9646893 0.006711 HS3ST3A1 17:13868041 ANKMY1 2:241466936

rs11403745 rs80244785 0.006455 10:101282605 CAVIN1 17:40560518
rs5743293 rs80244785 0.006455 NOD2 16:50763781 frameshift 0.83 0.02 CAVIN1 17:40560518
rs8079894 rs80244785 0.006455 HS3ST3A1 17:13868041 CAVIN1 17:40560518
rs9646893 rs80244785 0.006455 ANKMY1 2:241466936 CAVIN1 17:40560518
rs2066844 rs9673419 0.004813 NOD2 16:50745926 missense 1 0.79 NKD1 16:50661273
rs2066845 rs9673419 0.004813 NOD2 16:50756540 missense 1 0.1 NKD1 16:50661273
rs9988642 rs10889668 0.004363 IL23R 1:67726104 downstream gene 0.8 IL23R;C1orf141 1:67661244

rs80174646 rs10889668 0.004363 IL23R 1:67708155 intron 0.7 IL23R;C1orf141 1:67661244
rs9988642 rs7530511 0.004225 IL23R 1:67726104 downstream gene 0.8 IL23R 1:67685387 missense 0.01 0.01

rs80174646 rs7530511 0.004225 IL23R 1:67708155 intron 0.7 IL23R 1:67685387 missense 0.01 0.01
rs10889668 rs7530511 0.004225 IL23R;C1orf141 1:67661244 IL23R 1:67685387 missense 0.01 0.01
rs7827872 rs11784451 0.004082 CSMD1 8:3372149 CSMD1 8:3792688

Table 4. Top 20 SNP-SNP interaction for NID, trained with One-hot, as ranked per their strength. For each SNP in the pair, we mapped
to the corresponding gene and, if available, we add the DisGeNet information on Chron’s disease and Alzheimer. In particular, we add
the most severe consequence, the VDA score and the PMIDs, i.e., the number of studies were it was deemed relevant, the latter two
for both Chron’s disease and IBD.

Supplementary Tables 5: IBD dataset

Supplementary Tables 6: Simulation characteristics GAMETES

Simulation ID Sample size Input SNPs Num. interacting SNPs Num. simulations Heritability
1 3000 25 0 100 0.10
2 3000 25 0 100 0.20
3 3000 25 2 100 0.05
4 3000 25 2 100 0.10
5 3000 25 2 100 0.20
6 3000 50 2 100 0.10
7 3000 50 2 100 0.20
8 3000 100 2 100 0.10
9 3000 100 2 100 0.20

10 12000 100 2 10 0.10
11 12000 100 2 10 0.20
12 12000 1000 2 10 0.10
13 12000 1000 2 10 0.20
14 12000 1000 2 10 0.30

Table 2. The thirteen simulation characteristics of the GAMETES simulations. Note that The first two simulations do not have interacting
SNPs and that the phenotype is thus randomly defined.

Parameters Values Details

#Patients 3000, 10000
Simulated sample size: the test and validation set
are always composed of 1000 individuals

#Interacting SNPs 2 Bi-dimensional interaction

#SNPs 100, 1000 Number of SNPs simulated

Interaction strength 3, 10, 100 Strength of the epistasic effect

Interaction type Multiplicative, Exponential, Joint-dominant, Joint-recessive Type of interaction, as per EpiGEN

Main effect type Recessive, Dominant, Additive, None
Type of main effect, with None
being no main effect added

Table 3. Hyperparameters used in the EpiGEN simulations.
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SNP1 SNP2 strength Gene SNP1 SNP1
Position

Consequence
SNP1

Score VDA
Chron SNP1

Score VDA
IBD SNP1 GENE SNP2 SNP2

Position
Consequence

SNP2
Score VDA

Chron SNP2
Score VDA
IBD SNP2

rs2066844 rs2066845 0.003225 NOD2 16:50745926 missense 1 0.79 NOD2 1:67708155 missense 1 0.1
rs80174646 rs9988642 0.002398 IL23R 1:67708155 intron 0.7 IL23R 16:50763781 downstream 0.8
rs80174646 rs11805303 0.00136 IL23R 1:67708155 intron 0.7 IL23R;C1orf141 16:50745926 intron 0.81
rs9988642 rs11805303 0.00136 IL23R 1:67726104 downstream 0.8 IL23R;C1orf141 1:67708155 intron 0.81
rs11805303 rs10889668 0.001282 IL23R;C1orf141 1:67675516 intron 0.81 IL23R;C1orf141 1:67726104
rs80174646 rs10889668 0.001282 IL23R 1:67708155 intron 0.7 IL23R;C1orf141 16:50756540
rs9988642 rs10889668 0.001282 IL23R 1:67726104 downstream 0.8 IL23R;C1orf141 10:101284237
rs5743293 rs13356400 0.001272 NOD2 16:50763781 frameshift 0.83 0.02 SMIM3 16:50763781
rs13356400 rs11403745 0.001128 SMIM3 5:150189395 16:50745926
rs5743293 rs11403745 0.001128 NOD2 16:50763781 frameshift 0.83 0.02 1:67726104
rs5743293 rs9646893 0.0009 NOD2 16:50763781 frameshift 0.83 0.02 ANKMY1 1:67708155
rs13356400 rs9646893 0.0009 SMIM3 5:150189395 ANKMY1 1:67681669
rs11403745 rs9646893 0.0009 10:101282605 ANKMY1 7:26872581
rs9646893 rs76872657 0.000899 ANKMY1 2:241466936 17:37912377
rs11403745 rs76872657 0.000899 10:101282605 5:158827769
rs13356400 rs76872657 0.000899 SMIM3 5:150189395 9:4981602
rs5743293 rs76872657 0.000899 NOD2 16:50763781 frameshift 0.83 0.02 22:39659773
rs80174646 rs4655692 0.000811 IL23R 1:67708155 intron 0.7 IL23R;C1orf141 2:43452334
rs10889668 rs4655692 0.000811 IL23R;C1orf141 1:67661244 IL23R;C1orf141 3:49721532
rs9988642 rs4655692 0.000811 IL23R 1:67726104 downstream 0.8 IL23R;C1orf141 1:67708155

Table 5. Top 20 SNP-SNP interaction for NID, trained without One-hot, as ranked per their strength. For each SNP in the pair, we
mapped to the corresponding gene and, if available, we add the DisGeNet information on Chron’s disease and Alzheimer.

SNP1 SNP2 strength Gene SNP1 SNP1
Position

Consequence
SNP1

Score VDA
Chron SNP1

Score VDA
IBD SNP1 GENE SNP2 SNP2

position
Consequence

SNP2
Score VDA

Chron SNP2
Score VDA
IBD SNP2

rs5743293 rs80174646 26545.81 NOD2 16:50763781 frameshift 0.83 0.02 IL23R 1:67708155 intron 0.7
rs2066844 rs5743293 13421.24 NOD2 16:50745926 missense 1 0.79 NOD2 16:50763781 frameshift 0.83 0.02

rs113653754 rs2066844 13042.14 HLA-DQB1 6:32626272 upstream 0.7 0.7 NOD2 16:50745926 missense 1 0.79
rs2066844 rs80174646 11030.34 NOD2 16:50745926 missense 1 0.79 IL23R 1:67708155 intron 0.7
rs5743293 rs9988642 10995.54 NOD2 16:50763781 frameshift 0.83 0.02 IL23R 1:67726104 downstream 0.8
rs2066844 rs2066845 10068.56 NOD2 16:50745926 missense 1 0.79 NOD2 16:50756540 missense 1 0.1
rs11403745 rs4409764 10030.6 10:101282605 GOT1-DT;LINC01475 10:101284237 upstream 0.82 0.8
rs5743293 rs5743293 7917.82 NOD2 16:50763781 frameshift 0.83 0.02 NOD2 16:50763781 frameshift 0.83 0.02
rs2066844 rs2066844 6425.98 NOD2 16:50745926 missense 1 0.79 NOD2 16:50745926 missense 1 0.79
rs2066844 rs9988642 5813.28 NOD2 16:50745926 missense 1 0.79 IL23R 1:67726104 downstream 0.8
rs7517847 rs80174646 5395.46 IL23R;C1orf141 1:67681669 intron 0.88 0.72 IL23R 1:67708155 intron 0.7
rs5743293 rs7517847 4885.02 NOD2 16:50763781 frameshift 0.83 0.02 IL23R;C1orf141 1:67681669 intron 0.88 0.72
rs10486483 rs28550029 4824.41 SKAP2 7:26892440 intron 0.8 0.7 SKAP2 7:26872581 intron 0.7
rs10781499 rs12946510 3801.66 CARD9 9:139266405 synonymous 0.7 0.8 GRB7 17:37912377 downstream 0.7 0.8
rs10781499 rs56167332 3366.99 CARD9 9:139266405 synonymous 0.7 0.8 LINC01845 5:158827769 intron 0.7 0.7
rs5743293 rs75900472 3054.25 NOD2 16:50763781 frameshift 0.83 0.02 JAK2 9:4981602 upstream 0.7 0.7
rs12692250 rs2413583 3040.7 ATG16L1 2:234146047 PDGFB 22:39659773 intron 0.8 0.8
rs13402621 rs8098 2941.56 THADA 2:43458611 ZFP36L2 2:43452334
rs2066845 rs3197999 2929.64 NOD2 16:50756540 missense 1 0.1 MST1 3:49721532 missense 0.83 0.85
rs3197999 rs80174646 2663.46 MST1 3:49721532 missense 0.83 0.85 IL23R 1:67708155 intron 0.7

Table 6. Top 20 SNP-SNP interaction for LGBM 2d, as ranked per their strength. It is worth noting that the strength for LGBM is
calculated differently than NID and hence non-comparable. For each SNP in the pair, we mapped to the corresponding gene and, if
available, we add the DisGeNet information on Chron’s disease and Alzheimer.

SNP1 strength Gene SNP1 SNP
position

Consequence
SNP1

Score VDA
Chron SNP1

PMIDS
Chron SNP1

Score VDA
IBD SNP1

PMIDS
IBD SNP1

rs2066844 3586 NOD2 16:50745926 missense 1 83 0.79 10
rs5743293 3509 NOD2 16:50763781 frameshift 0.83 8 0.02 2
rs2066845 2928 NOD2 16:50756540 missense 1 78 0.1 11
rs3197999 2501 MST1 3:49721532 missense 0.83 8 0.85 7
rs10781499 2300 CARD9 9:139266405 synonymous 0.7 2 0.8 2
rs3024505 2228 IL10;Y_RNA 1:206939904 upstream gene 0.85 8 0.81 3
rs11403745 2105 10:101282605
rs12946510 1936 GRB7 17:37912377 downstream gene 0.7 2 0.8 3
rs10761659 1859 ZNF365;ALDH7A1P4 10:64445564 intron 0.81 4 0.8 3
rs2836878 1808 RPL23AP12;LINC02943 21:40465534 intergenic 0.71 3 0.8 3
rs2413583 1785 PDGFB 22:39659773 intron 0.8 3 0.8 2
rs56167332 1782 LINC01845 5:158827769 intron 0.7 4 0.7 2
rs7517847 1779 IL23R;C1orf141 1:67681669 intron 0.88 11 0.72 3
rs6062496 1761 RTEL1-TNFRSF6B;TNFRSF6B 20:62329099 intron 0.7 2 0.7 2
rs4409764 1751 GOT1-DT;LINC01475 10:101284237 upstream gene 0.82 5 0.8 2
rs7282490 1739 GATD3A 21:45615741 intron 0.7 2 0.8 2
rs170089 1686 DENND3 8:142161957

rs10800314 1612 FCGR2A 1:161472789 upstream gene 0.7 1
rs12766391 1604 ZNF365;ALDH7A1P4 10:64441204
rs7554511 1526 INAVA 1:200877562 intron 0.8 3 0.81 3

Table 7. Top 20 SNP hits for LGBM 1d. We mapped each each SNP to the corresponding gene and, if available, we add the DisGeNet
information on Chron’s disease and Alzheimer.
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SNP1 SNP2 Approach pvalue pos SNP1 Gene SNP1 pos SNP2 Gene SNP2
rs2294883 rs454748 LGBM 4.93621E-09 6:32399674 BTNL2;TSBP1-AS1 6:32245433 NOTCH4; TSBP1-AS
rs11403745 rs6584278 LGBM 3.40023E-08 10:99522848 LINC014675 10:99518342 LINC01475; GOT1
rs11403745 rs4409764 LGBM 8.51701E-08 10:99522848 LINC014675 10:99524480 LINC01475
rs2066844 rs9673419 NID OneHot 1.1175E-07 16:50712015 NOD2 16:50627362 NKD1
rs2066844 rs5743293 PATH OneHot,LGBM 5.80966E-07 16:50712015 NOD2 16:50729868 NOD2
rs1109863 rs2066844 NID OneHot, NID 1.88448E-05 16:50658453 NKD1; LOC101927272 16:50712015 NOD2
rs5743293 rs6715150 PATH OneHot 7.36191E-05 16:50729868 NOD2 2:173890830 SP3;LOC105373745

Table 8. Epistasis pairs found with logistic regression. In italics, the intergenic SNPs manually mapped to the flanking genes.
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