Article (Scientific journals)
Novel multi-omics deconfounding variational autoencoders can obtain meaningful disease subtyping
Li, Zuqi; Katz, Sonja; Saccenti, Edoardo et al.
2024In Briefings in Bioinformatics, 25 (6), p. 512
Peer Reviewed verified by ORBi
 

Files


Full Text
Li2024_deconfounding variational autoencoder.pdf
Author postprint (958.87 kB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Li, Zuqi ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique
Katz, Sonja
Saccenti, Edoardo
Fardo, David W
Claes, Peter
Martins dos Santos, Vitor AP
Van Steen, Kristel  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique
Roshchupkin, Gennady V
Language :
English
Title :
Novel multi-omics deconfounding variational autoencoders can obtain meaningful disease subtyping
Publication date :
2024
Journal title :
Briefings in Bioinformatics
ISSN :
1467-5463
eISSN :
1477-4054
Volume :
25
Issue :
6
Pages :
bbae512
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 October 2024

Statistics


Number of views
10 (0 by ULiège)
Number of downloads
10 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi