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Abstract 
Unsupervised learning, particularly clustering, plays a pivotal role in disease subtyping and patient stratification, especially with the 
abundance of large-scale multi-omics data. Deep learning models, such as variational autoencoders (VAEs), can enhance clustering 
algorithms by leveraging inter-individual heterogeneity. However, the impact of confounders—external factors unrelated to the 
condition, e.g. batch effect or age—on clustering is often overlooked, introducing bias and spurious biological conclusions. In this 
work, we introduce four novel VAE-based deconfounding frameworks tailored for clustering multi-omics data. These frameworks 
effectively mitigate confounding effects while preserving genuine biological patterns. The deconfounding strategies employed include 
(i) removal of latent features correlated with confounders, (ii) a conditional VAE, (iii) adversarial training, and (iv) adding a regularization 
term to the loss function. Using real-life multi-omics data from The Cancer Genome Atlas, we simulated various confounding 
effects (linear, nonlinear, categorical, mixed) and assessed model performance across 50 repetitions based on reconstruction error, 
clustering stability, and deconfounding efficacy. Our results demonstrate that our novel models, particularly the conditional multi-
omics VAE (cXVAE), successfully handle simulated confounding effects and recover biologically driven clustering structures. cXVAE 
accurately identifies patient labels and unveils meaningful pathological associations among cancer types, validating deconfounded 
representations. Furthermore, our study suggests that some of the proposed strategies, such as adversarial training, prove insufficient 
in confounder removal. In summary, our study contributes by proposing innovative frameworks for simultaneous multi-omics data 
integration, dimensionality reduction, and deconfounding in clustering. Benchmarking on open-access data offers guidance to end-
users, facilitating meaningful patient stratification for optimized precision medicine. 
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Introduction 
Unsupervised learning, in particular clustering, focuses on sub-
grouping individuals based on their intrinsic data structures, 
therefore playing an essential role in tasks like disease subtyping 
and patient stratification. In the realm of biology and medicine, 
where large-scale multi-omics data, including genomics, tran-
scriptomics, and epigenomics, are prevalent, deep learning mod-
els can enhance clustering algorithms. Their ability to reduce 
the dimensionality of complex data allows clustering algorithms 
to more effectively explore the heterogeneity between patients. 
Underscoring the utility of deep learning models, in particu-
lar autoencoders, in terms of data integration, dimensionality 

reduction, and handling a multitude of heterogeneous input data, 
Simidjievski et al. [1] recently benchmarked various variational 
autoencoder (VAE) models for multi-omics data. 

Although patient stratification with deep learning methods 
are gaining traction in genomic data applications, they are often 
susceptible to external influences that are unrelated to the con-
dition of interest. One severe limitation is the entanglement of 
biologically meaningful signals with variables unrelated to the 
inherent structure that one is interested in, i.e. technical artifacts, 
random noise from measurements, or other biological factors 
such as sex, ethnicity, and age (Fig. 1a). These factors, referred 
to as confounders in the context of unsupervised learning, may
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Figure 1. Graphical illustration of (a.) confounded signal and (b.) workflow of this study. (a.) A simplified graphical representation of a measured 
signal (gray) which is a mix of independent sources such as the true signal (pink), a biological confounder (purple), and a technical confounder (blue). 
Note the difficulty of extracting the true signal from the measured additive signals. (b.) Graphical summary of the work conducted in this study. (1) 
Based on multi-omics pan-cancer TCGA data (section 2.1) different confounding effects were simulated (section 2.2). (2) Subsequently, four different 
deconfounding VAE frameworks (section 2.4) were trained on the the artificially confounded data. (3) The obtained deconfounded data were compared 
with the original, un-confounded input data in terms of clustering stability and deconfounding capabilities (section 2.6). 

cause clustering algorithms to form subgroups based on irrel-
evant signals, which may ultimately lead to spurious biological 
conclusions [ 2, 3]. 

Conventional strategies to account for and mitigate con-
founders involve training linear regression (LR) per feature against 
the confounder and taking the residual part during pre-processing 
[4] or mapping the latent embedding to an unconfounded space 
after model training [5]. Conditional variational autoencoders 
(cVAEs) have been used to create normative models considering 
confounding variables, such as age, for neurological disorders 
[6]. Dincer et al. [7] proposed adversarial training to derive 
expression embeddings devoid of confounding effects, expanded 
upon by the single-cell generative adversarial network for batch 
effect removal [8]. Liu et al. [9] used a regularization term 
in the autoencoder’s loss function to minimize correlation 
between latent embeddings and confounding bias. Despite their 
methodological diversity, these methods have only been validated 
to work effectively on data from a single omics source and are not 
tailored toward disease subtyping and patient stratification. 

To address this gap, we propose four novel VAE-based decon-
founding frameworks for clustering of multi-omics data, utilizing 
the (i) removal of latent features correlated with confounders, 
(ii) a cVAE [6], (iii) adversarial training [7, 8], and (iv) adding a 
regularization term to the loss function [9] as deconfounding 
strategies. To objectively assess whether our models can remove 
out-of-interest signals and find a patient clustering unbiased by 
confounding signals, we applied and evaluated our models on 
gene expression and DNA methylation pan-cancer data from The 
Cancer Genome Atlas (TCGA) program which we augmented with 
artificial confounding effects. In total, we simulated four different 
types of confounders, including linear, nonlinear, categorical, and 
a mixture thereof, resembling realistic confounders such as age 
(linar, nonlinear) [10–13], BMI (nonlinear) [14], or batch effects 
(categorical) [2, 7]. 

The contribution of our study is as follows: 

• Four novel multi-omics clustering models based on VAE and 
different deconfounding strategies are presented. 

• We highlight that various deconfounding techniques address 
confounded clustering in distinct ways, often overlooked 
within the algorithm’s framework. 

• Different confounding effects are simulated on the real-life 
TCGA dataset to demonstrate the influence of confounders 
on clustering and underscore the necessity for deconfound-
ing models. 

• Readers are provided with guidelines detailing strengths 
and limitations of each approach, along with suggestions 
on selecting an appropriate framework fitting their purposes. 

Materials and methods 
Data collection and preprocessing 
This study utilized data collected within TCGA project [15], 
encompassing gene expressions (mRNA) of 4333 patients 
and DNA methylations (DNAm) of 2940 patients across six 
different cancer types, including breast invasive carcinoma 
(BRCA), thyroid carcinoma (THCA), bladder urothelial carcinoma 
(BLCA), lung squamous cell carcinoma (LUSC), head and neck 
squamous cell carcinoma (HNSC), and kidney renal clear cell 
carcinoma (KIRC). We selected these six types of carcinoma 
for their relatively similar histology, compared with glioma, 
sarcoma, etc., and balanced sample sizes to better evaluate our 
proposed methods. Focusing solely on gene expression and DNA 
methylation omics, we aimed to optimize model performance and 
prevent overfitting. Additionally, selecting these omics introduced 
diversity in data formats and distributions, with gene expression 
ranging continuously and DNA methylation exhibiting a largely
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bimodal beta distribution, enhancing the complexity and depth 
of our analysis. 

Datasets were downloaded using the R package TCGAbiolinks 
[16]. The subsequent filtering step removed patients with (i) only 
a single data type available, (ii) missing clinical metadata, (iii) 
”american indian” or ”alaska native” ancestry, and (iv) unknown 
tumor stage, resulting in a total of 2547 patients. The preprocess-
ing of mRNA and DNAm data included the removal of probes (i) 
not shared across all cancer types, (ii) with missing values, and 
(iii) with 0 variance across all included patients, resulting in 58 456 
mRNA and 232 088 DNAm features. To reduce the number of input 
features, we only considered the 2000 probes showing the largest 
variance across patients for each data type, resulting in a final 
data set of 2547 patients and 4000 features. This reduction strikes 
a balance between the number of features included and biological 
variability addressed and is in line with other clustering works on 
TCGA data [17]. TCGA–BRCA molecular subtype information for 
724 (out of 731) patients was derived from the TCGA Pan-Cancer 
Atlas [18] via the cBioPortal [19]. 

Simulation of confounders 
To imitate common confounding scenarios in real-life clus-
tering applications we simulated linear, squared, categorical 
confounders, and a mixture thereof, resembling common 
confounders in real-life studies, e.g. ageing [12, 13, 20], BMI 
[14], or batch effects [2, 7]. These confounders hinder the true 
or biologically meaningful clustering by intrinsically affecting 
the data structure in an unwanted way and possibly leading 
to a confounded clustering. The goal of this simulation is to 
evaluate how well the multi-view clustering models perform in 
the presence of confounders, whose pattern and magnitude are 
artificially generated and hence measurable. 

Here we denote the mRNA data as X1 ∈ R
n×p and DNAm 

data as X2 ∈ R
n×q, where  n, p, q are the number of patients, 

gene expressions, and DNA methylations, respectively. We first 
rescaled every mRNA and DNAm feature to the range [0, 1] to 
avoid large ratios between the raw feature and the confounding 
effect. A visualization of all confounding effects can be found in 
the Supplementary Methods. 

Linear confounder 
We uniformly generated a random numeric confounder c ∈ Rn 

with discrete values {0, 1, 2, 3, 4, 5}, leading to a confounder 
clustering of six classes. Its linear effect on each individual is 
c + 5 and a random weight for each feature was multiplied 
with it: 

X∗ 
1 = X1 + Elinear 

1 = X1 + (c + 5) ⊗ w1; (1)  

X∗ 
2 = X2 + Elinear 

2 = X2 + (c + 5) ⊗ w2, (2)  

where ⊗ denotes the outer product between two vectors, and 
w1 ∈ Rp ∼ U(0, 0.1), w2 ∈ Rq ∼ U(0, 0.2). We chose the uniform 
distribution of w1 to range from 0 to 0.1 so that the total linear 
effect would range from 0 to 1, having the same scale as X1. We  
increased the upper bound of w2 to 0.2 due to our observation that 
X2 is less sensitive to linear confounders. 

Nonlinear confounder 
Nonlinear effects were simulated in a similar way to linear effects. 
However, to mimic a nonlinear confounder, as observed in, e.g. 
the significant quadratic association between body mass index 
and colon cancer risk [14], we considered adding an element-wise 

squared confounding effect c2 on the features: 

X∗ 
1 = X1 + Esquare 

1 = X1 + c2 ⊗ w1; (3)  

X∗ 
2 = X2 + Esquare 

2 = X2 + c2 ⊗ w2, (4)  

where w1 ∼ U(0, 0.04), w2 ∼ U(0, 0.04). The distribution of w1 and 
w2 was also determined based on the scale of X1 and X2. 

Categorical confounder 
The categorical confounding effect was achieved by shifting 
patients with the same confounder class to a distinctive direction 
in the feature space. More specifically, we first sampled six 
p-dimensional vectors for shifting mRNA data and six q-
dimensional vectors for shifting DNAm data, both from U(0, 1) 
and corresponding to six different confounder classes. The n 
patients were randomly assigned to each of the six categories. 
As a result, two matrices C1 ∈ Rn×p and C2 ∈ Rn×q denote the 
concatenation of shifting vectors of every patient for mRNA and 
DNAm, respectively. The categorical confounder is therefore the 
membership of all individuals in the six classes. A typical example 
of categorical confounders for clustering could be batch effects 
caused by collecting data from different centers [2, 7]. In the field 
of cancer subtyping, common categorical confounders include 
tumor stage and ethnicity [21, 22]. Then the confounded features 
were created via 

X∗ 
1 = X1 + Ecateg 

1 = X1 + diag(w) · C1; (5)  

X∗ 
2 = X2 + Ecateg 

2 = X2 + diag(w) · C2, (6)  

where diag(·) converts a vector into its corresponding diagonal 
matrix. Different from the case of a numeric confounder, the 
weight vector w ∈ Rn ∼ U(0, 1) of the categorical confounder 
indicates to what extent every patient was shifted so that patients 
would have various strength of association with their confounder 
class. 

Mixed confounder types 
Real-life data analyses are likely affected by multiple confounders 
of different kinds, for instance, many cancer studies correct for 
age, age squared, education, etc. jointly in their models [12, 13]. 
Here we simulated a mixed confounding effect of linear, nonlinear, 
and categorical confounders as described below: 

X∗ 
1 = X1 + Elinear 

1 + Esquare 
1 + Ecateg 

1 ; (7)  

X∗ 
2 = X2 + Elinear 

2 + Esquare 
2 + Ecateg 

2 , (8)  

where Elinear 
1 , Elinear 

2 , Esquare 
1 , Esquare 

2 , Ecateg 
1 , Ecateg 

2 represent the sec-
ond term in Formulae (1)–(6), respectively. 

Variational autoencoder for data integration 
(XVAE) 
A variety of different VAE architectures exist for the purpose of 
data integration, as extensively compared by Simidjievski et al. 
[1]. In this study, we utilize one architecture recommended by the 
respective authors, namely the X-shaped variational autoencoder 
(XVAE) (Fig. 2). This architecture merges the heterogeneous input 
data sources into a combined latent representation z by learn-
ing to reconstruct each source individually from the common 
representation. Here we consider only two data types of a single
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Figure 2. Schematic representation of an XVAE. The two input layers 
(X1, X2) denote the two omics dimension used in this study, namely gene 
expression and DNA methylation. The encoder consists of contiguous 
hidden layers, each with fewer nodes. We design the encoder of XVAE with 
a total of two layers prior to the latent embedding. In the first hidden layer, 
the dimension of each input entity is reduced individually. In the second 
hidden layer, input entities get fused into a combined layer. The latent 
embedding (red) represents the bottleneck of the XVAE with the minimum 
number of nodes. The decoder reversely mirrors the layer structure of the 
encoder, with the final layer featuring the same number of nodes as the 
input layer as it attempts to reconstruct (X1

′, X2
′) the original input from 

the latent embedding. 

datapoint x1 and x2, and the loss function of XVAE is as follows: 

LXVAE(φ, θ ; x1, x2) = −  Ez∼qφ (z|x1,x2)[log pθ (x1, x2|z)] 
+ β ∗ MMD(qφ(z|x1, x2)||p(z)), (9)  

where qφ(z|x1, x2) encodes the latent space as a probability 
distribution over the input variables (parameterized by φ) and  
pθ (x1, x2|z) encodes the reconstruction of input variables as a 
probability distribution over the latent space (parameterized by 
θ ). Following the originally proposed implementation, we use 
maximum mean discrepancy (MMD) as a regularization term 
to constrain the latent distribution qφ to be a standard Gaussian 
distribution, balanced by the constant beta (β), which is set to 1 
for all experiments. A more detailed description on autoencoders, 
as well as the XVAE architecture and training procedure, can be 
found in the Supplementary Methods. 

Multi-omics deconfounding models 
Here, we will first describe in section 2.4.1 the use of LR for con-
founder correction and PCA for dimensionality reduction, which 
we deem the ”baseline model” due to their wide popularity. Then, 
we outline in sections 2.4.2–2.4.5 the four XVAE-based decon-
founding models proposed in this study. Throughout this section 
we denote the confounder value of a single data point as c. 

Baseline model: linear regression and PCA (LR+PCA) 
Under the assumption that the effects of one or multiple con-
founders are linearly additive to the true signal of a feature, 
we build a LR model for the confounders against each mRNA 
or DNAm feature and then take their residuals as adjusted fea-
tures. Subsequently, the adjusted features from the two data 
types are concatenated and their dimensionality is reduced via 
PCA (LR+PCA). We select the top 50 PCs explaining most of the 

variance of data to keep the embedding size identical to that of 
every XVAE-based model. The 50 PCs explaining the most variance 
of data are considered for the final clustering, for which KMeans 
with 10 random initializations is applied. 

Conditional X-shaped variational autoencoder 
cVAE [23] is a semi-supervised variation of VAE, which originally 
aims to fit the distribution of the high-dimensional output as a 
generative model conditioned on auxiliary variables. Lawry et al. 
[6] proposed to achieve deconfounding through a cVAE incorpo-
rating confounding variable information as auxiliary variables. 
We extend this initial idea to be able to handle multi-omics 
data by replacing the originally proposed VAE with the XVAE 
model, resulting in a conditional X-shaped variational autoen-
coder (cXVAE) architecture (Fig. 3A). We tested the integration 
of confounders at different levels of the cXAVE, including the 
input layer, the hidden layer that fuses multiple inputs, and the 
embedding. More details on cXVAE implementations can be found 
in the Supplementary Methods. 

X-shaped variational autoencoder with adversarial 
training 
The adversarial deconfounding autoencoder proposed by Dincer 
et al. [7] follows the idea of training two networks simultane-
ously—an autoencoder to generate a low dimensional embedding 
and an adversary multi-layer perceptron (MLP) trained to predict 
the confounder from said embedding (Fig. 3B). By adversarially 
training the two networks, i.e. the autoencoder aims to generate 
an embedding which cannot be used for confounder prediction 
by the MLP, it aims at generating embeddings that can encode 
biological information without encoding any confounding sig-
nal. As the original framework can only handle a single data 
type, we adapt it to work with multi-omics input by replacing 
its autoencoder with XVAE architecture. Details on architecture 
and training procedure of X-shaped variational autoencoder with 
adversarial training (adv-XVAE) can be found in Supplementary 
Methods. 

X-shaped variational autoencoder with deconfounding 
regularization 
Augmenting the loss function of deep learning models is an effec-
tive way to impose restrictions on the model or enforce learning of 
specific patterns. As an example, studies focused on disentangling 
the often highly correlated latent space of autoencoders impose 
constraints on the correlation between latent features by adding a 
penalty term to the loss function [9]. Inspired by this idea, we for-
mulate a deconfounding regularization term aiming to reduce the 
degree of correlation between latent features and confounders. 
The regularized loss function becomes 

Lcr−XVAE(φ, θ ; x1, x2, c) = LXVAE(φ, θ ; x1, x2) + f (z, c), (10) 

where f (z, c) denotes the joint association between latent features 
and confounders. More specifically, we implement two different 
association measurements: Pearson correlation and mutual infor-
mation. Because Pearson correlation ranges from -1 (negatively 
correlated) to 1 (positively correlated) and both indicate strong 
relationship, we regularize only the magnitude of correlation by 
two methods, taking its absolute value or squared value. Because 
the confounder distribution needed for mutual information is 
usually unknown, we implement two methods to approximately
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Figure 3. Schematic representation of (a.) cVAE and (b.) adv-XVAE. (a.) Depicts the cXVAE implementation termed input + embed due to the addition of 
confounders (green) in the first layer of the encoder and decoder. (b.) Depicts the adv-XVAE implementation termed multiclass due to the usage of only a 
single supervised adverarial network (light green) trained to predict confounders (green) using a multiclass prediction loss. X1 and X2 are the two omics 
dimensions, namely gene expression and DNA methylation, while X1

′ and X2
′ denote their respective reconstruction. More details and visualizations of 

other implementation can be found in the Supplementary Material. 

compute mutual information as loss function, with differentiable 
histogram or kernel density estimate. 

Feature selection by removing correlated latent features 
(XVAE+FS) 
The removal of latent features correlated with confounders comes 
from the idea of post hoc interpretation of latent features [24]. 
To identify confounded latent features, we calculate the Pearson 
correlation between each latent variable and the confounder. 
For determining the threshold indicating which latent features 
are being removed from further analyses, we test two different 
approaches: 

(1) P -value cutoff—the P-value of the Pearson correlation 
indicates the probability that the computed correlation is 
smaller than a random correlation between uncorrelated 
datasets. Latent features with a P-value <0.05 are excluded 
from analyses. 

(2) Absolute correlation coefficient—Pearson correlation measures 
the linear relationship between two variables. Latent fea-
tures exhibiting an absolute Pearson correlation of more 
than 0.3 (weak correlation) or 0.5 (strong correlation) are 
excluded. 

Consensus clustering 
Different from the baseline LR model which adopts KMeans on the 
deconfounded features for clustering, we apply consensus clus-
tering on the latent features of each VAE-based deconfounding 
model. Here, consensus clustering takes the advantage of random 
sampling in a VAE and it aggregates the individual clustering of 
each embedding sampled from the latent distributions [25]. We 
first generate 50 embedding matrices for all the n samples, on 
each of which a KMeans clustering is performed. Subsequently, 
a consensus matrix Ā ∈ R

n×n is constructed from all the 50 

clusterings: 

Ā = 
1 
50 

50∑

i=1 

Ai, (11)  

where Ai ∈ Rn×n is the binary matrix of each KMeans clustering 
indicating if two data points are assigned to the same cluster 
or not. Values of Ā are in the range [0,1], where 0 means the 
two corresponding samples are never clustered together in the 50 
clusterings, while 1 means they are always in the same cluster. 
Finally, a spectral clustering is performed on the consensus matrix 
Ā to derive a stable clustering of the patients. To experiment on 
the potential impact of the number of embedding matrices, we 
rerun the model with various numbers (10, 50, 100, 150, 200) and 
compare the model performance (Supplementary Table 4). 

Evaluation metrics 
We apply each of the aforementioned models to the artificially 
confounded multi-omics dataset described in sections 2.1 and 2.2. 
Every model is evaluated in terms of their XVAE reconstruction 
accuracy, measured as the relative reconstruction error of inputs, 
their clustering stability, evaluated by the dispersion score of 
consensus clustering (CC), and deconfounding capabilities for 
clustering, estimated by calculating the adjusted Rand index (ARI) 
for true (cancer types) and confounder labels. 

XVAE reconstruction accuracy 
Model training is monitored through inspection of the valida-
tion loss. To evaluate reconstruction quality of the trained XVAE 
model, we compute the L2 relative error (RE) between the orig-
inal input (x) and reconstructed data (x

′
) for (i) each data type 

individually: 

RE =
√∑n 

i=1 ‖xi − x′
i‖2

√∑n 
i=1 ‖xi‖2 

, (12)
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as well as (ii) for the combined data types: 

RE =
∑2 

m=1

√∑n 
i=1 ‖xmi − x′

mi‖2

∑2 
m=1

√∑n 
i=1 ‖xmi‖2 

, (13) 

where m = 1, 2 indicates the two data types and n is the number 
of samples. 

Clustering stability 
Before assessing how well each model can derive a meaningful 
clustering, we want to first check if a model can stably cluster the 
samples. To achieve this goal, we employ the dispersion score to 
measure the internal stability of consensus clustering based on 
its consensus matrix Ā: 

Dispersion =
∑n 

i=1

∑n 
j=1(Āij − 0.5)2 ∗ 4 

n2 (14) 

The dispersion score ranges from 0 to 1, where 1 shows a perfect 
stability that every value in Ā is either 0 or 1, i.e. no confusion 
among the clusterings, and the lower the less consensus among 
the clusterings. 

Deconfounding capabilities 
We compare our clustering with two different labels, the true 
one, namely cancer types, and the confounder. An ideal model 
should deconfound the features sufficiently while keeping the 
meaningful information for obtaining the true clustering. In other 
words, we expect a model with high ARI with the true label and 
low ARI with the confounder label. The association between true 
patient label and clusters obtained when modeling the original 
(unconfounded) data represents the best achievable clustering, 
with ARI value converging toward 1. 

Similar to ARI, we compute another external clustering metric, 
the normalized mutual information (NMI), which measures the 
dependence between two clusterings. As it only shows comple-
mentary information to ARI, we record the NMI of every clustering 
model in Supplementary Table 1. 

Implementation 
For better stability and generalization, we train each model 50 
times using (i) randomly sampled training and validation sets with 
a ratio of 80:20 and (ii) different seed of randomization. 

Software 
All of the models described in this study are built in Pytorch 
Lightning [26] and trained using the GPU units RTX 2080 Ti 11GB. 

Results 
cXVAE outperforms other considered 
deconfounding strategies in the presence 
of a single confounder 
We simulated different types of confounding effects—linear, 
nonlinear (squared), and categorical—on the multi-omics TCGA 
pan-cancer dataset to benchmark a total of four deconfounding 
frameworks, namely XVAE with Pearson correlation feature 
selection (XVAE+FS), conditional XVAE (cXVAE), adversarial 
training with XVAE (adv-XVAE), and confounder-regularised XVAE 
(cr-XAVE) (see Methods for more details). We additionally included 
two baseline models to compare with (1) confounder correction 
with linear regression (LR+PCA) and (2) vanilla XVAE without 

any deconfounding (XVAE). To estimate the robustness of each 
method, each model was trained on 50 iterations of randomly 
sampled training and validation data (80:20 split) and random 
seed initialization. 

All proposed deconfounding approaches were able to correct 
for a linear confounder, as denoted by the high ARI for true 
clustering and low ARI for confounder clustering (Table 1). Perfor-
mances started to decline for nonlinear confounding problems, 
with cXVAE clearly outperforming other strategies. For nonlinear 
confounders we noted large ARI for confounder clustering across 
all strategies and simulation setups. This illustrates that, while 
good clustering performance for true labels were achieved, the 
full removal of unwanted signal was not easily achievable for all 
the models. Categorical confounding was perceived to be the most 
difficult, with all models except cXVAE exhibiting a high decrease 
in true clustering performance. Notably, X-shaped variational 
autoencoder with deconfounding regularization (cr-XVAE) and 
XVAE+FS were able to remove artificial confounders completely, 
however at the cost of simultaneously removing true clustering 
signal. adv-XVAE, which in theory should be a strategy well suited 
to deal with categorical problems, fails to consistently remove the 
categorical confounding effect. In general we noted a decline of 
reconstruction accuracy of models with increasing complexity of 
the confounder simulations. 

To illustrate the deconfounding capabilities of several of the 
developed models, we examined their clustering results obtained 
on the TCGA dataset involving categorical confounders (Fig. 4). 
The UMAP plot of the original, unconfounded data (Fig. 4a) shows 
the distinct clustering of THCA, KIRC, and BRCA, while the cluster-
ing of BLCA, LUSC, and HNSC appears to be more entangled. The 
observed clustering was significantly obscured by the addition of 
an artificial categorical confounder, visible as the clustering being 
dictated by the confounder class rather than cancer type (Fig. 4b). 
An attempted deconfounding using a vanilla XVAE (Fig. 4c) or 
adv-XVAE (Fig. 4d) model displayed little improvement over the 
confounded clustering, demonstrating the models’ inability to 
remove the artificially introduced signal. The cXVAE model, how-
ever, proved to be able to effectively mitigate the confounding 
effect, resulting in a clustering similar to the original, uncon-
founded data (Fig. 4e). In an attempt to investigate whether the 
deconfounding using cXVAE not only restores pan-cancer type 
but can also recover cancer subtypes, we examined the cluster-
ing of several TCGA-BRCA molecular subtypes, including Her2, 
LumA, Basal, LumB, and normal, before and after deconfounding 
(Supplementary Figure 5). This revealed that while molecular 
subtypes were completely masked by the simulated categorical 
confounders (Supplementary Figure 5, b), deconfounding with 
cXVAE could retrieve their original clustering (Supplementary 
Figure 5c). 

In summary, across all confounder simulations, cXVAE clearly 
outperformed other deconfounding strategies in terms of cluster-
ing accuracy, deconfounding power, and model robustness. The 
ARI on true clustering obtained by cXVAE in all three scenarios 
reached around 0.7, which is very close to the performance of 
the vanilla XVAE on unconfounded data (0.731, see details in 
Supplementary Table 2). 

A more detailed summary of the performances of each model 
can be found in Supplementary Table 1. The dimensionality 
reduction plots for models not displayed in Fig. 4, namely 
LR+PCA, XVAE+FS, and cr-XVAE can be found in Supplementary 
Figure 2. It illustrates that while XVAE+FS and cr-XVAE yield 
performances similar to XVAE and adv-XVAE, LR+PCA seems 
unable to distinguish the true signal from the confounder signal.
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Table 1. Overview performances of deconfounding strategy for single confounder simulations. Values are displayed as mean ± 
standard deviation of 50 runs with different parameter initialization and randomly sampled training and validation data. Models on 
the first column indicate the following deconfounding strategies and implementations thereof: LR followed by principal component 
analysis and KMeans clustering (LR+PCA), vanilla XVAE without any deconfounding (XVAE), XVAE with feature selection in the form of 
removing correlated latent features (XVAE+FS, correlation cutoff = 0.5), conditional XVAE (cXVAE, input + embedding), adversarial 
training with XVAE (adv-XVAE, multiclass MLP), confounder-regularised XVAE (cr-XAVE, squared correlation regularization). 
Reconstruction error: relative error in the reconstruction of X1 and X2 weighted eqally; CC dispersion: consensus clustering agreement 
over 50 iterations; True clustering: ARI of consensus clustering derived clusters with True label labels; Confounder clustering: ARI of 
consensus clustering derived clusters with simulated confounder labels 

Linear 

Clustering performance (ARI) 

Reconstruction error CC dispersion True label (cancer type) Confounder 

LR+PCA – – 0.692 0.001 
XVAE 0.246 (± 0.004) 0.844 (± 0.045) 0.506 (± 0.116) 0.151 (± 0.057) 
XVAE+FS 0.245 (± 0.004) 0.860 (± 0.028) 0.571 (± 0.092) 0.008 (± 0.007) 
cXVAE 0.234 (± 0.003) 0.935 (± 0.023) 0.712 (±0.055) 0.001 (± 0.001) 
adv-XVAE 0.245 (± 0.004) 0.901 (± 0.032) 0.568 (± 0.070) 0.093 (± 0.051) 
cr-XVAE 0.244 (± 0.003) 0.873 (± 0.028) 0.598 (± 0.074) 0.004 (± 0.004) 

Nonlinear 

Clustering performance (ARI) 

Reconstruction error CC dispersion True label (cancer type) Confounder 

LR+PCA – – 0.391 0.215 
XVAE 0.236 (± 0.003) 0.826 (± 0.042) 0.307 (± 0.141) 0.297 (± 0.071) 
XVAE+FS 0.236 (± 0.003) 0.805 (± 0.040) 0.411 (± 0.142) 0.138 (±0.078) 
cXVAE 0.227 (± 0.002) 0.908 (± 0.031) 0.646 (± 0.079) 0.076 (± 0.074) 
adv-XVAE 0.238 (± 0.004) 0.942 (± 0.025) 0.568 (± 0.049) 0.194 (± 0.006) 
cr-XVAE 0.235 (± 0.002) 0.852 (± 0.043) 0.478 (± 0.129) 0.154 (± 0.042) 

Categorical 

Clustering performance (ARI) 

Reconstruction error CC dispersion True label (cancer type) Confounder 

LR+PCA – – 0.150 0.071 
XVAE 0.216 (± 0.003) 0.762 (± 0.055) 0.330 (± 0.125) 0.048 (± 0.088) 
XVAE+FS 0.216 (± 0.003) 0.787 (± 0.040) 0.361 (± 0.100) 0.010 (± 0.023) 
cXVAE 0.210 (± 0.002) 0.911 (± 0.033) 0.664 (± 0.070) 0.001 (± 0.001) 
adv-XVAE 0.217 (± 0.002) 0.764 (± 0.058) 0.240 (± 0.188) 0.156 (± 0.084) 
cr-XVAE 0.216 (± 0.003) 0.813 (± 0.034) 0.368 (± 0.101) 0.001 (± 0.001) 

Furthermore, the deconfounded clustering derived by cXVAE in 
the presence of multiple confounder is shown in Supplementary 
Figure 4, which indicates the capabilities of cXVAE to decon-
found even in this complex scenario. While Table 1 depicts 
the best-performing implementation of each deconfounding 
model, we tested a number of possible implementations (see 
Methods), which we observed to have a notable impact on model 
performance (Supplementary Table 2). Therefore, we provide 
design recommendations for each deconfounding strategy in the 
Supplementary Results. 

cXVAE is easily extendable to handle multiple 
confounders of mixed types 
In a realistic setting datasets can be confounded by multiple 
confounders with different biasing effects. In an attempt to 
investigate how well-deconfounding strategies can handle more 
than one confounder, we simulated the parallel presence of 
three confounders of different effect, namely linear, nonlinear, 
and categorical (Table 2). In line with our observations with 
the single confounder simulations, cXVAE outperformed other 

models in terms of true clustering accuracy and deconfounding 
efficiency. While also other strategies like XVAE+FS, cr-XVAE, or  
LR+PCA were able to successfully remove all three simulated 
effects, they achieved this at the cost of true signal. adv-XVAE 
failed to fully remove confounders while also showing very 
low true clustering accuracy and can therefore be considered 
unsuitable for the task. We also noted that the decline in 
reconstruction accuracy with increasingly complex confounding 
situations is even more pronounced in multiple confounder 
settings. 

cXVAE is able to retrieve biology-driven 
clustering from confounded data 
To illustrate the deconfounding capabilities of cXVAE, the model 
that outperformed others across all four evaluation metrics in var-
ious confounding scenarios, we examined the clustering results 
obtained on the TCGA dataset involving categorical confounders 
(Fig. 4). The UMAP plot of latent features clearly showed that 
BRCA, THCA, and KIRC were well clustered by cXVAE, while BLCA, 
LUSC, and HNSC were still entangled.
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Figure 4. Deconfounding behavior of several developed models. Dimensionality reduction (UMAP) plot of the (a.) unconfounded TCGA pan-cancer data, 
(b.) categorically confounded data, as well as deconfounding using the (c.) vanilla XVAE (d.) adv-XVAE, and (e.) cXVAE. The marker colors indicate the 
true label labels (i.e. TCGA cancer types), while the marker shapes indicate the six classes (1–6) of the confounder (see section 2.2). The steps indicated 
describe the experimental order (see Fig. 1). 

Table 2. Overview performances of deconfounding strategy in the presence of multiple confounders. Values are displayed as mean ± 
standard deviation of 50 runs with different parameter initialisation and randomly sampled training and validation data. For a detailed 
description of columns and models, please refer to Table 1. 

Multiple confounders 

Clustering performance (ARI) 

Reconstruction error CC dispersion True label 
(cancer type) 

Linear 
confounder 

Squared 
confounder 

Categorical 
confounder 

LR+PCA – – 0.215 0.001 0.014 0.001 
XVAE 0.161 (± 0.003) 0.725 (± 0.043) 0.216 (± 0.089) 0.015 (± 0.019) 0.140 (± 0.043) 0.067 (± 0.048) 
XVAE+FS 0.161 (± 0.003) 0.731 (± 0.037) 0.265 (± 0.085) 0.007 (± 0.009) 0.019 (± 0.030) 0.109 (± 0.057) 
cXVAE 0.146 (± 0.002) 0.905 (± 0.022) 0.634 (± 0.042) 0.001 (± 0.001) 0.001 (± 0.001) 0.001 (± 0.001) 
adv-XVAE 0.158 (± 0.004) 0.753 (± 0.066) 0.225 (± 0.120) 0.016 (± 0.023) 0.107 (± 0.052) 0.106 (± 0.051) 
cr-XVAE 0.161 (± 0.003) 0.764 (± 0.031) 0.369 (± 0.064) 0.003 (± 0.002) 0.007 (± 0.010) 0.001 (± 0.001) 

In summary, we found the deconfounding behavior of cXVAE 
to not only yield clusterings resembling those of the uncon-
founded data, but also be in line with the pathological and phys-
iological differences between the pan-cancer types. BLCA arises 
from urothelial cells in the transitional epithelium, which can 
change from cuboidal to squamous form when stretched. Fur-
thermore, squamous differentiation is by far the most common 
histological variant of urothelial carcinoma [ 27], indicating a close 

relationship between urothelial carcinoma and squamous cell 
carcinoma. Apart from BLCA, the overlap in clustering of LUSC 
and HNSC can be directly explained by their common origin of 
squamous cells, while BRCA, THCA, and KIRC are all carcinoma 
related to glandular cells [28]. Supporting the validity of our 
obtained cXVAE clustering, other multi-omics pan-cancer studies 
utilizing stacked VAEs [29], penalized matrix factorization [30], or 
supervised VAE [31] have retrieved similar cancer type clustering.
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Discussion 
In this study, we addressed the possible harm of ignoring or 
inadequately handling confounders to clustering samples with 
(multi-)omics measurements. In epidemiology, a confounder is 
a variable that can affect the result of a study because it is 
related to both the exposure and the outcome being studied. Here, 
we extended the definition to unsupervised models for disease 
subtyping to indicate variables that can distort the relationship 
between inferred or predicted cluster membership and disease. 

Extensive simulation revealed that cXVAE stands out as a 
versatile and accurate deconfounding approach. The applicability 
of conditional autoencoder to biological data to e.g. correct for 
batch effects [6] or disentangle confounders in functional mag-
netic resonance imaging [32] or microRNA data [33] has been 
shown before. However, by merging the principles of a conditional 
autoencoder with the framework of an autoencoder specifically 
tailored for the integration of multi-omics data, our research 
charts new frontiers in the domain of deconfounded patient 
stratification. 

While adversarial training may offer an alternative flexible 
deconfounding approach, we confirm that optimization of model 
hyper-parameters is challenging [8]. Instability may become more 
pronounced in the presence of multiple confounders. This can 
be explained by the fact that adversarial networks were trained 
separately for each confounder, sequentially adding extra terms 
to its objective function (see Supplementary Table 2). In the 
literature, a statistical correlation loss has been proposed to 
replace the adversarial prediction loss in a adversarial training 
model [34], resembling our cr-XVAE model. The difference is 
that cr-XVAE directly computes the correlation between the VAE 
embedding and the confounder without an additional adversarial 
network. 

Confounders can be dealt with in various ways. We imple-
mented the most widely used strategy in association studies, 
namely regressing out the confounding effect from each feature 
with a linear model [4], as a baseline model to compare with. 
There are other methods working on the confounding issue for 
out-of-sample prediction based on, e.g. confound-isolating cross-
validation [35] and feature selection in the embedding space [36]. 
However, as we are more interested in the in-sample heterogene-
ity, in this paper, we focus on deconfounding approaches that have 
shown success with unsupervised autoencoder models. 

The identification of disease subtypes requires performing a 
clustering algorithm at some point. Instead of a joint training for 
reconstruction and clustering, we chose for a decoupled strategy 
to (1) avoid having too many terms in loss function to confuse 
training, and (2) reduce computation time and initialization set-
tings with iteratively training clustering in a joint loss function. 
Consensus clustering furthermore has several advantages in data 
science including robustness, stability, interpretability, and flexi-
bility, as it can be applied to various types of data and clustering 
algorithms. Our consensus clustering scheme adopts spectral 
clustering as its final step because the consensus matrix can 
be naturally viewed as a graph of all patients and the superior 
performance of spectral clustering has been shown on graphs [37]. 
We chose to sample and cluster the embedding for 50 iterations 
to construct the consensus matrix. Having more iterations can 
improve the robustness of consensus clustering but at the cost of 
computation time. We observed that the 50 individual clusterings 
are very consistent and increasing the number of iterations will 
not necessarily improve the final performance (Supplementary 
Table 4). 

It remains a daunting task to generate data that adequately 
reflect the complexity of real-life cases. Therefore, one needs 
to be aware that simulations of confounders always represent 
simplifications of real observable effects. Note that the range of 
weight vectors w1 and w2 may have an important influence on 
how the data are confounded. A large weight will cause a stronger 
confounding effect and potentially increase difficulty in finding 
the true clustering. Currently, we set their values based on the 
scale of the original features to balance between the true signal 
and confounder signal. While this study is limited to the use 
of two data types, in principle the XVAE design utilized allows 
the integration of heterogeneous data from many more sources 
simultaneously. Additionally, since all evaluated deconfounding 
strategies share the same XVAE design as a foundation, we antic-
ipate consistent training time and performance across different 
model architectures when scaling up dimensions. Although the 
multi-omics pan-cancer data available within TCGA are vast, this 
study utilized only a limited set of information. This presents a 
limitation and warrants that the biological conclusions of this 
study be interpreted with care. Future research will utilize the full 
pan-cancer TCGA data, enabling a more holistic interpretation of 
findings. 

Conclusion 
In this study, we presented four VAE-based multi-omics clustering 
models and their variations, following different deconfounding 
strategies. Their clustering and deconfounding performance was 
evaluated and compared with baseline models on the multi-
omics pan-cancer dataset from TCGA with artificially generated 
confounding effects. The results showed both the necessity to 
adjust for confounders and that our novel models, cXVAE in 
particular, can effectively deal with the confounding effects and 
obtain the biologically meaningful clustering. We demonstrate 
that our multi-omics deconfounding VAE clustering models have 
big potential in delivering accurate patient subgrouping or dis-
esase subtyping, ultimately enabling better personalized health-
care. 

Key Points 
• The biasing effect of confounders on clustering is a often 

overlooked, which may result in spurious biological con-
clusions. 

• We present four novel multi-omics clustering models 
based on VAE and different deconfounding strategies. 

• The impact of confounding effects on clustering is 
demonstrated using real-life TCGA dataset and show-
cases the effectiveness of deconfounding models in mit-
igating these influences. 

• Readers are provided with guidelines with strengths and 
limitations of each deconfounding approach and sugges-
tions on selecting an appropriate framework fitting their 
purposes. 
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