Article (Scientific journals)
Clustering individuals using INMTD: a novel versatile multi-view embedding framework integrating omics and imaging data
Li, Zuqi; Windels, Sam FL; Malod-Dognin, Noel et al.
2024In bioRxiv, p. 2024–09
Peer reviewed
 

Files


Full Text
Li2024_INMTD preprint.pdf
Author preprint (977.46 kB) Creative Commons License - Attribution, Non-Commercial, No Derivative
Download

All documents in ORBi are protected by a user license.

Send to



Details



Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Li, Zuqi ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique
Windels, Sam FL
Malod-Dognin, Noel
Weinberg, Seth M
Marazita, Mary L
Walsh, Susan
Shriver, Mark D
Fardo, David W
Claes, Peter
Przulj, Natasa
Van Steen, Kristel  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Biostatistics, biomedicine and bioinformatics
Language :
English
Title :
Clustering individuals using INMTD: a novel versatile multi-view embedding framework integrating omics and imaging data
Publication date :
2024
Journal title :
bioRxiv
Publisher :
Cold Spring Harbor Laboratory
Pages :
2024–09
Peer reviewed :
Peer reviewed
Available on ORBi :
since 18 October 2024

Statistics


Number of views
6 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi