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Abstract 
Motivation: Combining omics and images, can lead to a more comprehensive clustering of 

individuals than classic single-view approaches. Among the various approaches for multi-view 

clustering, nonnegative matrix tri-factorization (NMTF) and nonnegative Tucker 

decomposition (NTD) are advantageous in learning low-rank embeddings with promising 

interpretability. Besides, there is a need to handle unwanted drivers of clusterings (i.e. 

confounders).  

Results: In this work, we introduce a novel multi-view clustering method based on NMTF and 

NTD, named INMTD, that integrates omics and 3D imaging data to derive unconfounded 

subgroups of individuals. In the application to real-life facial-genomic data, INMTD generated 

biologically relevant embeddings for individuals, genetics and facial morphology. By removing 

confounded embedding vectors, we derived an unconfounded clustering with better internal 

and external quality; the genetic and facial annotations of each derived subgroup highlighted 

distinctive characteristics. In conclusion, INMTD can effectively integrate omics data and 3D 

images for unconfounded clustering with biologically meaningful interpretation. 

Availability and implementation: https://github.com/ZuqiLi/INMTD 
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1 Introduction 
Clustering is a crucial technique in data analysis, enabling the identification of intrinsic 

structures within complex datasets by grouping similar data points. In the field of medicine, 

clustering has been widely used for uncovering disease subtypes, tailoring personalized 

treatments, and improving early diagnosis (Ghosal et al. 2020). As data complexity grows, 

clustering methods based on a single view or single data source are often insufficient, 

necessitating the development of more sophisticated approaches. Multi-view clustering has 

emerged as a powerful solution, leveraging multiple data perspectives to enhance clustering 

quality and reveal richer patterns than single-view methods (Rappoport and Shamir 2018; 

Chauvel et al. 2020). As the data views commonly used in biomedical science to describe an 

individual, omics and imaging data have shown essential advantages in understanding various 

biological phenomena (Antonelli et al. 2019). For instance, Chen et al. obtained better 

prediction for subtypes of lung adenocarcinoma by integrating extracted features from 

histopathological images and omics data than using a single view (Chen et al. 2021). However, 

few people have worked on clustering individuals based on omics and imaging data. Moreover, 

processing images normally requires tensor methods due to their 3D format (Hériché, 

Alexander and Ellenberg 2019), e.g. a color image consists of pixels represented by height, 

width and color channel, and a 3D mesh consists of X, Y, Z coordinates for height, weight and 

depth. 

Various multi-view clustering methods have been developed, which can be generally classified 

into three categories, based on the relationship between data integration and clustering 

(Rappoport and Shamir 2018): 1) early integration combines all datasets into a single one 

before building the model for clustering, 2) intermediate integration clusters a joint 

embedding learnt from all views, and 3) late integration computes a clustering from each 

dataset and then merges all clusterings together. Out of the three, intermediate integration 

approaches have shown superior performance in many applications possibly because they 

require a model specifically designed for multi-view clustering tasks (Khan and Maji 2019; 

Wang et al. 2020; Yun et al. 2021). By clustering subjects with multi-view data from a joint 

embedding, integrative nonnegative matrix factorization (intNMF) proposed by Chalise and 

Fridley has found similar cancer subtypes identified by previous studies (Chalise and Fridley 

2017). This embedding represents the subjects with patterns that are naturally additive and 

hence easily interpretable (Lee and Seung 1999). A well-established extension of NMF model 

for better interpretation and clustering is nonnegative matrix tri-factorization (NMTF) that 

decomposes the input dataset into three smaller matrices (Ding et al. 2006). However, NMTF 

models only work with 2D matrices and cannot deal with data views of higher dimensions, e.g. 

a 3D tensor, which is the common data format for imaging or spatial data. A generalization of 

NMTF to tensors is the nonnegative Tucker decomposition (NTD) (Kim and Choi 2007). It 

decomposes the original input tensor into a core tensor with the same number of dimensions 

and one embedding matrix corresponding to each of its dimensions. There have been 

attempts to integrate multiple cross-linked 2D matrices into a tensor, which, however, does 

not work on originally 3D data (Luo et al. 2022). Another work by Broadbent et al. combined 

a tensor with a similarity matrix, while they treated the matrix as a graph regularization to the 

Tucker decomposition instead of a separate data view (Broadbent, Song and Kuang 2024). 
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Clustering real-world data is often complicated by the presence of confounders—factors that 

influence the observed data in an unwanted way (Liu et al. 2015). Confounders can obscure 

the true clustering structure, leading to spurious results (Schwarz et al. 2024). Addressing 

confounders is essential for accurate clustering, as their effects can mask the genuine patterns 

within the data. Effective clustering methods must account for these confounding variables to 

uncover the true underlying structure. A widely adopted approach is to regress out the 

confounding effects from every feature during pre-processing, but it comes with the potential 

loss of useful signals prior to the modelling (Pourhoseingholi, Baghestani and Vahedi 2012). 

Some other strategies include kernel conditional clustering which computes the final 

clustering conditioned on confounders (He et al. 2020). However, the conditional clustering is 

computationally expensive and cannot efficiently work on high-dimensional data. 

Here in this paper, we propose a novel multi-view clustering method, integrative non-negative 

matrix and tensor decomposition (INMTD), which obtains unconfounded clustering jointly 

from 2D and 3D datasets. It learns an embedding matrix for each data dimension and 

subgroups the individuals from their embedding after removing vectors in the embedding 

space that are linked with confounders. Because the true cluster structure of real-life patient 

dataset is often unknown, we evaluated INMTD on a US cohort from healthy individuals 

(White et al. 2021), whose heterogeneity mainly comes from the population structure with 

confounders including age, sex, etc. Combining 2D genotypes and 3D facial morphology, our 

model computed biologically meaningful embeddings and connected well the facial and 

genetic embeddings. Furthermore, INMTD derived an unconfounded clustering of individuals 

with better intrinsic quality and clearer association with population structure than the original 

clustering. We also characterized each population subgroup with their enriched genetic 

pathways and highlighted facial areas. 

2 Methods 

2.1 INMTD: integrative non-negative matrix and tensor decomposition with 

correction for confounders 
INMTD unifies NMTF and NTD to cluster subjects with multi-view data of 2D and 3D structure. 

We assume 𝑝1 subjects described by two data views, a 2D matrix 𝑋12 ∈ ℝ+
𝑝1×𝑝2 of 𝑝2 features 

and a 3D tensor 𝒳134 ∈ ℝ+
𝑝1×𝑝3×𝑝4 of 𝑝3 features in the 2nd dimension and 𝑝4 features in the 

3rd dimension, both nonnegative. The aim of our method is to jointly compute the embedding 

matrices for each dimension and cluster the 𝑝1 subjects based on its own embedding (Fig. 1). 
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Fig. 1: Overview of INMTD model for integrating 2D and 3D data. The 2D matrix 𝑋12  is 

decomposed into two embedding matrices 𝐺1 and 𝐺2 and a core matrix 𝑆12. The 3D tensor 

𝒳134  is decomposed into three embedding matrices 𝐺1, 𝐺3  and 𝐺4  and a core tensor 𝒮134. 

INMTD integrates 𝑋12 and 𝒳134 by jointly optimizing 𝐺1, which is shared by the two views. The 

orthogonality constraint on 𝐺1 ensures disentanglement of embedding vectors. 

For 2D matrix 𝑋12, NMTF factorizes it into three nonnegative submatrices 𝐺1 ∈ ℝ+
𝑝1×𝑟1, 𝐺2 ∈

ℝ+
𝑝2×𝑟2 and 𝑆12 ∈ ℝ+

𝑟1×𝑟2, so that 𝑋12 ≈ 𝐺1𝑆12𝐺2
𝑇. The objective of NMTF is to find the optimal 

𝐺1, 𝐺2 and 𝑆12 that minimize the reconstruction error: 

min
𝐺1≥0,𝐺2≥0,𝑆12≥0

𝐽 = ‖𝑋12 − 𝐺1𝑆12𝐺2
𝑇‖𝐹

2 , (1) 

where ‖⋅‖𝐹
2  indicates the Frobenius norm and ≥ 0 for a matrix means all values in that matrix 

should be nonnegative. The multiplicative update rules to solve this objective function have 

been proposed by Ding et al. (Ding et al. 2006) 𝐺1 and 𝐺2 are low-rank embeddings for the 𝑝1 

subjects and 𝑝2 features, respectively, where 𝑟1 and 𝑟2 are their ranks and normally 𝑟1 ≪ 𝑝1 

and 𝑟2 ≪ 𝑝2 . 𝑆12  is the core matrix that links  𝐺1  with 𝐺2  and can be considered as the 

compressed representation of 𝑋12. 

Similar to NMTF, the NTD model decomposes the 3D tensor 𝒳134  into 3 embeddings 𝐺𝑖 ∈

ℝ𝑝𝑖×𝑟𝑖 with 𝑖 ∈ {1,3,4}, named the mode matrices, and a core tensor 𝒮134 ∈ ℝ𝑟1×𝑟3×𝑟4 using 

the mode product of tensor:  

𝒳134 ≈  𝒮134 ×1 𝐺1 ×2 𝐺3 ×3 𝐺4, (2) 

where 𝒮134 ×𝑛 𝐺𝑖  is the mode-𝑛 product between tensor 𝒮134 and matrix 𝐺𝑖 , resulting in a 

new tensor with its 𝑛 -th dimension changed. The objective of NTD is to minimize the 

reconstruction error: 
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min
𝐺𝑖≥0,𝒮134≥0

𝐽 = ‖𝒳134 − 𝒮134 ×1 𝐺1 ×2 𝐺3 ×3 𝐺4‖𝐹
2 , (3) 

To jointly decompose 𝑋12 and 𝒳134, we derive an integrative objective from the two views via 

NMTF and NTD: 

min
𝐺𝑖≥0,𝑆12≥0,𝒮134≥0

𝐽 = ‖𝑋12 − 𝐺1𝑆12𝐺2
𝑇‖𝐹

2 + ‖𝒳134 − 𝒮134 ×1 𝐺1 ×2 𝐺3 ×3 𝐺4‖𝐹
2 , (4) 

where 𝐺𝑖 ∈ ℝ𝑝𝑖×𝑟𝑖 are the low-rank embeddings corresponding to 𝑝1 subjects, 𝑝2 features of 

view 1, 𝑝3  features of view 2 and 𝑝4  channels of view 2. The rank parameters 𝑟𝑖  are 

determined via the rule of thumb: 𝑟𝑖 = √𝑝𝑖 2⁄  (Kodinariya and Makwana 2013). 𝐺1 is shared 

by both terms in formula (4) and jointly learnt from both views. We further adopt an 

orthogonality constraint on 𝐺1 for more rigorous clustering interpretation (Ding et al. 2006): 

min
𝐺𝑖≥0,𝑆12≥0,𝒮134≥0

𝐽 = ‖𝑋12 − 𝐺1𝑆12𝐺2
𝑇‖𝐹

2 + ‖𝒳134 − 𝒮134 ×1 𝐺1 ×2 𝐺3 ×3 𝐺4‖𝐹
2 ,

𝑠. 𝑡. 𝐺1
𝑇𝐺1 = 𝐼 (5)

 

Because formula (5) has no analytic solution for 𝐺𝑖, 𝑆12 and 𝒮134, we iteratively compute their 

values via the multiplicative update rules (Dissez et al. 2019) (see section 2.2). Furthermore, 

in each iteration, we normalize every column of 𝐺1 after updating to further guarantee unit 

vectors and eliminate the scale indeterminacy as suggested by Li et al. (Bo Li, Guoxu Zhou and 

Cichocki 2015)  

We apply 𝑘-means clustering (with 10 random initializations) on the joint embedding, 𝐺1, and 

select the best number of clusters based on Silhouette score. Silhouette score is a classic 

internal metric that measures how well a dataset is clustered. A higher value (close to 1) 

suggests a more valid clustering.  

To assess how much 𝐺1 is confounded by a set of known confounders, 𝐶, we conduct a linear 

model F-test between every confounder and every column of 𝐺1 . The unconfounded 

clustering is then recomputed from the columns of 𝐺1 that have no significant association with 

any confounders. This is done also by 𝑘-means and Silhouette score for the optimal number 

of clusters. The removal of confounded embedding components is based on the additive 

nature of NMF-based methods that the data is represented by the sum of all its embedding 

aspects (Lee and Seung 1999). Deconfounding at the embedding level is computationally less 

expensive and can better preserve meaningful information than the widely used approach, 

which is to regress out confounders from each feature at the input level. 

2.2 Training procedure of INMTD 
To solve INMTD, we use a fixed-point method that, starting from an initial solution, iteratively 

uses multiplicative update rules to converge towards a locally optimal solution. During the 

optimization process, all the embedding matrices and core matrix/tensor of INMTD are 

iteratively updated to minimize the objective function (formula (5)). Following the derivation 

procedure used to derive multiplicative update rules for orthogonal NMTF and NTD, we derive 

the update rules for INMTD: 
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𝐺1(𝑖𝑗) ← 𝐺1(𝑖𝑗)
√

(𝑋12𝐺2𝑆12
𝑇 + 𝑋134

(1)
 [𝒮 ×2 𝐺3 ×3 𝐺4](1)𝑇

)
𝑖𝑗

(𝐺1𝐺1
𝑇𝑋12𝐺2𝑆12

𝑇 + 𝐺1𝐺1
𝑇𝑋134

(1)
 [𝒮 ×2 𝐺3 ×3 𝐺4](1)𝑇

)
𝑖𝑗

(6) 

𝐺2(𝑖𝑗) ← 𝐺2(𝑖𝑗)√
(𝑋12

𝑇 𝐺1𝑆12)𝑖𝑗

(𝐺2𝑆12
𝑇 𝐺1

𝑇𝐺1𝑆12)𝑖𝑗

(7) 

𝐺3(𝑖𝑗) ← 𝐺3(𝑖𝑗)
√

(𝑋134
(2)

 [𝒮 ×1 𝐺1 ×3 𝐺4](2)𝑇
)

𝑖𝑗

(𝐺3 [𝒮 ×1 𝐺1 ×3 𝐺4](2) [𝒮 ×1 𝐺1 ×3 𝐺4](2)𝑇
)

𝑖𝑗

(8) 

𝐺4(𝑖𝑗) ← 𝐺4(𝑖𝑗)
√

(𝑋134
(3)

 [𝒮 ×1 𝐺1 ×2 𝐺3](3)𝑇
)

𝑖𝑗

(𝐺4 [𝒮 ×1 𝐺1 ×2 𝐺3](3) [𝒮 ×1 𝐺1 ×2 𝐺3](3)𝑇
)

𝑖𝑗

(9) 

𝑆12(𝑖𝑗) ← 𝑆12(𝑖𝑗)√
(𝐺1

𝑇𝑋12𝐺2)𝑖𝑗

(𝐺1
𝑇𝐺1𝑆12𝐺2

𝑇𝐺2)𝑖𝑗

(10) 

𝑆134(𝑖𝑗𝑘) ← 𝑆134(𝑖𝑗𝑘)
√

[𝒳134 ×1 𝐺1
𝑇 ×2 𝐺3

𝑇 ×3 𝐺4
𝑇]𝑖𝑗𝑘

[𝒮134 ×1 𝐺1
𝑇𝐺1 ×2 𝐺3

𝑇𝐺3 ×3 𝐺4
𝑇𝐺4]𝑖𝑗𝑘

(11) 

𝑋134
(𝑛)

 denotes the mode-𝑛 matricization of 𝒳134, which reshapes 𝒳134 to a 2D matrix along its 

𝑛-th dimension. 

We initialize 𝐺𝑖 via singular value decomposition (SVD), which has shown better results than 

random initialization (Malod-Dognin et al. 2019). For 𝑋12, the original matrix is decomposed 

by SVD and 𝐺1  and 𝐺2  are derived from the left and right matrices of SVD, respectively. 

Because 𝒳134 is 3D, we run SVD for every slice along the 𝑝4 channels and average all the right 

matrices to compute the initial 𝐺3 and similarly run SVD for every slice along the 𝑝3 features 

to initialize 𝐺4. As the update rules are multiplicative, to avoid entries in 𝐺𝑖 to remain 0, we 

add an infinitesimal number (1e-5) so that these entries can be updated. 

𝑆12 and 𝒮134 can also be initialized by SVD through the eigen values if the original data frames 

are symmetric. But we don’t assume their symmetry in our framework, therefore, we apply 

the following rules: 

𝑆12 = 𝐺1
𝑇𝑋12𝐺2 (12) 

𝒮134 = 𝒳134 ×1 𝐺1
𝑇 ×2 𝐺3

𝑇 ×3 𝐺4
𝑇 (13) 

The initialized 𝑆12  and 𝒮134  are automatically nonnegative because all the multipliers are 

nonnegative. 

To assess the goodness and convergence of INMTD, we track a metric along the optimization, 

which is the total relative error: 
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Total Relative Error =
‖𝑋12 − 𝐺1𝑆12𝐺2

𝑇‖𝐹
2 + ‖𝒳134 − 𝒮134 ×1 𝐺1 ×2 𝐺3 ×3 𝐺4‖𝐹

2

‖𝑋12‖𝐹
2 + ‖𝒳134‖𝐹

2
(14) 

The total relative error computes the fraction of the reconstruction errors of the two datasets 

𝑋12  and 𝒳134  in their L2 norms. It is a nonnegative value and a lower total relative error 

indicates better reconstruction from the decomposed elements. 

2.3 Association between embeddings 
Linking two embeddings from different views can be achieved by mapping them to the same 

space of 𝐺1 because 𝐺1 is the embedding shared by both data types. More specifically, we 

project 𝐺2 to the space of 𝐺1 via the core matrix 𝑆12, so that �̂�2 = 𝐺2𝑆12
𝑇 . The new matrix �̂�2 

now has the same embedding size as 𝐺1 and is in the same embedding space as 𝐺1. Similarly, 

𝐺3 is also projected to the space of 𝐺1 via the core tensor 𝒮134, resulting in �̂�3 = 𝒮134 ×3 𝐺3. 

In the special case when 𝑟4 = 1 and hence 𝒮134 is of shape 𝑟1 × 𝑟3 × 1, this is equivalent to 

�̂�3 = 𝐺3𝑆13
𝑇 , where 𝑆13  reshapes 𝒮134  to 𝑟1 × 𝑟3 . Subsequently, the relationship between 

feature (row) 𝑖 in 𝐺2 and feature (row) 𝑗 in 𝐺3 can be assessed by cosine similarity: 

Cosine Similarity =  
�̂�2(𝑖) ⋅ �̂�3(𝑗)

‖�̂�2(𝑖)‖
𝐹

2

‖�̂�3(𝑗)‖
𝐹

2 , (15) 

where �̂�2(𝑖)  indicates the 𝑖 -th row of �̂�2  and �̂�3(𝑗)  the 𝑗 -th row of �̂�3 . Cosine similarity 

measures the dot product between two vectors regardless of their magnitudes, providing 

good normalization when comparing between �̂�2 and �̂�3. It ranges from -1 to 1 and the higher 

the more similar between the two vectors. 

3 Experiments 

3.1 Evaluation dataset 
We apply INMTD to a multi-view dataset of 4,680 normal people with European ancestry, 

characterized by a 2D matrix and a 3D tensor (White et al. 2021). These people were recruited 

from three independent studies in the US, 3D Facial Norms cohort (PITT), Pennsylvania State 

University (PSU) and Indiana University-Purdue University Indianapolis (IUPUI). Every 

individual was described by 7,141,882 SNPs and a 3D mesh image which contains the X, Y, Z 

coordinates of 7,160 landmarks, namely 𝑋12 ∈ ℝ4,680×7,141,882  and 𝒳134 ∈ ℝ4,680×7,160×3 , 

respectively. Due to the enormous number of SNPs the SVD initialization on 𝑋12 had to adopt 

randomized SVD for feasibility. The initialization on  𝒳134 still used full SVD. To standardize 

genomic and facial data, we subtracted the mean from each view and divided every entry by 

the maximum of each view. We then took the absolute values to ensure nonnegativity. The 

rank 𝑟1 of embedding 𝐺1 was determined via the rule of thumb: √𝑝1 2⁄ ≈ 48 where 𝑝1 is the 

number of individuals, thus 𝐺1 ∈ ℝ+
4,680×48. 𝑟2 was chosen in a similar way but based on the 

number of protein-coding genes, namely 19,430, instead of SNPs to reduce the computational 

burden, and thus 𝐺2 ∈ ℝ+
7,141,882×99 . We had 𝐺3 ∈ ℝ+

7,160×60  and 𝐺4 ∈ ℝ+
3×1  because  𝑟3 =

√𝑝3 2⁄ ≈ 60  and 𝑟4 = √𝑝4 2⁄ ≈ 1 where 𝑝3 = 7,160  and 𝑝4 = 3 . For every individual, we 

also collected a few covariates, including age, sex, height, weight, face size and camera system. 

BMI was derived via: BMI = weight(𝑘𝑔) height(𝑚)2⁄  as an additional covariate. Here, we 
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consider these covariates as confounders to population structure because they might hinder 

us in finding the population subgroups based on genetic heterogeneity. To measure the 

population structure of the cohort, White et al. have computed four ancestry axes by 

projecting the genomic data onto the principal component (PC) space of the SNPs from the 

1000G Project (White et al. 2021).  

3.2 Evaluation on the Embeddings 
INMTD learns an embedding for SNPs, faces, and individuals. Here, we outline how we assess 

the biological validity for those embeddings separately and jointly. 

To biologically validate our individual embedding, we assess if 𝐺1 captures any heterogeneity 

of the cohort, including both population structure (ancestry axes) and confounding effects. 

Due to the orthogonality constraint, embedding vectors of 𝐺1  can be considered as 

independent and characterize different aspects of the individuals. We, therefore, test the 

statistical association between every embedding vector and every ancestry axis or confounder. 

In particular, Kruskal-Wallis ANOVA is used for ancestry axes and continuous confounders (age, 

height, weight, BMI and face size) and chi-squared test is used for categorical confounders 

(sex and camera system). We apply Benjamini-Hochberg (BH) correction for the multiple 

testing. 

To assess our SNP embedding, we cluster SNPs based on their embedding and use enrichment 

analysis to see if their space is functionally organised. As 𝐺2 is not orthogonal, we use 𝑘-means 

(with 10 random initializations) on 𝐺2 to subgroup SNPs into 𝑟2 = 99 clusters. We first check 

how well those SNP clusters coincide with the 19,430 protein-coding genes given the fact that 

gene is a natural summary of SNPs and biological processes are usually interpreted on a gene 

level. A gene is defined to be enriched in a SNP cluster if SNPs located 2K base pairs around 

this gene are present in this cluster significantly more than in the background. Hypergeometric 

test is applied for the enrichment analysis and the BH procedure is used for multiple testing 

correction. To further check if these clusters have biological relevance, we run another 

enrichment analysis for Gene Ontology (GO) terms for biological process. We annotate every 

SNP by GO terms if it is mapped to a gene that is annotated by a GO term and then test the 

overrepresentation of GO terms in every SNP cluster. Because GO terms are gene annotations, 

we annotate SNPs with GO terms that annotate their mapped genes. Only GO terms under 

biological process category are used and the BH procedure is applied for multiple testing 

correction. 

To assess our facial embedding, facial landmarks are subgrouped by Ward’s hierarchical 

clustering on 𝐺3 into 𝑟3 = 60 clusters, which segments the shape of face. The Ward’s method 

has been shown outperforming other common linkage methods (Ferreira and Hitchcock 2009; 

Vijaya, Sharma and Batra 2019). We first compute the Ward distance between every pair of 

landmarks in 𝐺3, based on which we then construct a hierarchical tree and cut it at a height 

with 60 clusters. We adopt hierarchical clustering in order to compare with the hierarchical 

segmentation done on the same dataset by White et al. They segmented the facial shape from 

global to local into five levels with 63 segments. To compare the ability of the hierarchical tree 

of 𝐺3  and the hierarchical segmentation by White et al. to faithfully capture the pairwise 
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dendrogrammatic distances between landmarks, we compute their cophenetic correlation 

coefficient:  

Cophenetic Correlation =
∑ (𝐷𝑖𝑗 − �̅�)(𝑍𝑖𝑗 − �̅�)𝑖<𝑗

√∑ (𝐷𝑖𝑗 − �̅�)
2

𝑖<𝑗 ∑ (𝑍𝑖𝑗 − �̅�)
2

𝑖<𝑗

, (16)
 

where 𝑖 and 𝑗 are facial landmarks, 𝐷 is the Euclidean distance matrix between landmarks, 

and 𝑍 is the cophenetic distance matrix between landmarks, denoting the heights at which 

two points are first merged in the dendrogram. �̅� and �̅� are the mean of 𝐷 and 𝑍, respectively. 

A cophenetic correlation close to 1 indicates a high-quality hierarchical clustering. 

To assess the association between the SNP and facial embeddings, we map them to the space 

of 𝐺1 and compute cosine similarity between each SNP and each facial landmark (see section 

2.3). For the SNPs closest to facial landmarks in the joint space, we apply the GREAT analysis 

(v.4.0.4), which finds biological meaning of the set of SNPs via the annotations of nearby genes. 

Technically speaking, GREAT analysis performs a binomial test for a set of SNPs to check 

whether the overlap between their associated genes and genes with a certain annotation is 

greater than random chance. To associate SNPs with genes, we apply the default and 

recommended settings (McLean et al. 2010), namely the ‘basal plus extension’ rule with 5kb 

upstream and 1kb downstream plus 1000kb extension. Note that one SNP can be associated 

with multiple genes and SNPs not associated with any genes are not included in this analysis. 

3.3 Characterization of unconfounded population subgroups 

The unconfounded population subgroups are characterized based on the projection of genetic 

and facial embeddings to the space of the sample embedding, enabling computing the 

similarity between population subgroup centroids and SNPs and facial landmarks. For each 

subgroup, we first select the top 0.1% SNPs with highest cosine similarity to its centroid in the 

joint space, to which the GREAT analysis is applied to reveal the most relevant phenotypes 

(HPO). The threshold of 0.1% is determined by balancing the number of genes selected per 

subgroup and the genomic coverage of genes selected for all subgroups (Supp. Fig. 1 and 2). 

We then visualize the cosine similarities of all facial landmarks to a subgroup centroid on the 

averaged face, in order to demonstrate how different areas of the face are associated with 

the corresponding subgroup.  

4 Results 

4.1 INMTD generates biologically meaningful embeddings from a real-life multi-

view dataset 
We applied INTMD to a real-world facial-genomic cohort collected from the US for 

unconfounded population subgrouping (White et al. 2021). This dataset consists of two data 

types, 𝑋12 ∈ ℝ+
4,680×7,141,882  for 7,141,882 SNPs in 4,680 people and 𝒳134 ∈ ℝ+

4,680×7,160×3 

for the 3D coordinates of 7,160 facial landmarks in the same 4,680 individuals (White et al. 

2021). A few confounders were collected as well, which are age, sex, height, weight, camera 

system and face size. We also derived BMI (body mass index) from height and weight as a 

potential confounder. To assess the population structure of this cohort, White et al. computed 
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four ancestry axes by projecting the genotypes to a principal component space built from the 

1000 Genomes Project data, in the manner of EIGENSTRAT (Price et al. 2006). We ran our 

INMTD model on this multi-view dataset for 1,000 iterations with SVD initialization and it 

converged in terms of the total relative error (Supp. Fig. 3). Due to the heuristic solver for 

formula (5), 𝐺1  is only approximately orthonormal. Therefore, we further checked the 

independencies between the embedding vectors of 𝐺1 based on its covariance matrix, namely 

𝐺1
𝑇𝐺1 (Supp. Fig. 4). 

Because the heterogeneity of a population can be largely described by population structure, 

age, sex, etc., we validated the information captured by 𝐺1  based on the statistical association 

between every column vector of 𝐺1 and every ancestry axis or confounder (Fig. 2). The results 

indicate that most vectors captured the information of population structure while being 

confounded. This is expected as, for instance, height has been reported to highly relate with 

different European ancestries (Cavelaars et al. 2000).  Furthermore, the 48 embedding vectors 

have different association patterns with the ancestry axes and confounders. For instance, the 

1st vector is significantly associated with most ancestry axes as well as confounders, while no 

association with the 6th vector is observed. 
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Fig. 2: Heatmap of P-values for the linear F test between every 𝑮𝟏 embedding vector and 

every confounder and ancestry axis. Non-significant P-values (larger than 0.05 after BH 

correction) were removed from the plot. 

To assess the biological relevance of the SNP embedding from 𝐺2, we applied 𝑘-means on 𝐺2 

to derive 99 clusters of SNPs. We first mapped every SNP to genes if it falls within or 2k base 

pairs around a gene and ignored SNPs that do not map to any genes. 97 out of 99 SNP clusters 

have at least one overrepresented gene (P-value < 0.05 in a hypergeometric test with BH 

correction for multiple testing) with respect to the background of all the SNPs that can map 

to a gene. 98.6% of genes have been enriched in at least one SNP cluster while most genes 

were enriched in only a few clusters (Fig. 3). We then applied GO (gene ontology) enrichment 

analysis for each cluster after assigning GO annotations of a gene to all its belonging SNPs. 

96.0% of 𝐺2 clusters statistically significantly overrepresented at least one GO term and 99.6% 

of GO terms have been enriched in at least one cluster (Fig. 4).  This result validated that the 

SNP clusters obtained from 𝐺2 have both genomic specificity and biological relevance. 

 

Fig. 3: Histogram showing the number of genes (y-axis) that are enriched in a given number 

of 𝑮𝟐 clusters (x-axis). An enrichment analysis is done between every gene and every 𝐺2 (SNP) 

cluster. We then compute how many genes (y-axis) are found to be enriched in different No. 

of clusters of SNPs (x-axis). 
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Fig. 4: Histogram showing the number of GO terms (y-axis) that are enriched in a given 

number of 𝑮𝟐 clusters. An enrichment analysis is done between every GO term and every 𝐺2 

cluster. We then compute how many GO terms (y-axis) are found to be enriched in different 

No. of clusters of SNPs (x-axis). 

To assess the quality of the facial embedding from 𝐺3 , we aimed to obtain a hierarchical 

segmentation on 𝐺3 and compare it with the work of White et al. (White et al. 2021) The 

chosen Ward’s hierarchical clustering yielded 60 facial segments (Supp. Fig. 5), with a 

cophenetic correlation coefficient of 0.638, which is higher than that of the facial 

segmentation by White et al. on the same images (0.414). It suggested that the hierarchical 

segmentation from embedding 𝐺3 better groups together facial landmarks that are close in 

3D space than the one by White et al., defining more spatially coherent ‘patches’. The 

visualization of these 60 clusters on an averaged face also showed that the landmarks within 

each cluster are spatially close to each other and the clustering is morphologically meaningful 

(Fig. 5). 
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Fig. 5: The 60 clusters derived from 𝑮𝟑, illustrated on the mean face shape of all individuals. 

Not every cluster has a unique color due to the large number of clusters, but neighboring 

clusters are distinguished by different colors. Every face shape is symmetric along X-axis 

(left/right), so is the facial segmentation. 

To further investigate the relationships between genetics and facial morphology, we mapped 

both 𝐺2 and 𝐺3 to the space of 𝐺1 (Supp. Fig. 6). For each facial landmark in the joint space, 

we selected the closest SNP in terms of cosine similarity, resulting in 905 unique SNPs in total. 

To assess what biological traits are associated with the chosen SNPs, we conducted a GREAT 

analysis on their neighbouring genes (McLean et al. 2010), which found 17 significantly 

enriched human phenotype ontology (HPO) terms (Gargano et al. 2024) based on the adjusted 

binomial P-values (Fig. 6). Most of the enriched terms are highly linked to facial morphology 

(especially eyes), limb or spine morphology and embryonic development, depicting close 

biological relationship between the embeddings for SNPs and facial landmarks, namely 𝐺2 and 

𝐺3 . Other enriched terms suggested high relatedness between facial morphology and 

myotonia. The results indicate that INMTD allows for uncovering biologically relevant 

associations between SNPs and facial landmarks. 
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Fig. 6: Dotplot of 17 significantly enriched HPO terms from 905 SNPs that are closest to facial 

landmarks in the joint space. GREAT analysis first mapped the 905 SNPs to 1,156 genes based 

on the default and recommended settings, and then ran a binomial test for the enrichment 

analysis with BH correction. X-axis shows the ratio between the number of observed genes 

and the number of genes annotated for each HPO term. The dot color indicates the 

significance of the adjusted binomial P-value in the form of -log10.  

4.2 INMTD finds unconfounded population subgroups characterized by their 

genetic and facial information 
To derive the optimal population subgroups, we applied 𝑘 -means on 𝐺1  with different 

number of clusters and found that the clustering with 48 clusters achieved the highest 

Silhouette score (0.169) (Supp. Fig. 7). As mentioned before, many vectors of 𝐺1  are 

significantly confounded, potentially disturbing correct interpretation and characterization of 

derived subgroups. In order to deal with the confounding effect, we removed the 28 columns 

in 𝐺1 that are significantly associated with any confounders, and clustered individuals based 

on the remaining 20 embedding vectors (Supp. Fig. 8). We then applied 𝑘-means on the 

unconfounded 𝐺1  with different number of clusters and the clustering with 20 clusters 

achieved the highest Silhouette score (0.329) (Supp. Fig. 9). This score is statistically higher 

(empirical P-value = 0.02 from 1000 repetitions, Supp. Fig. 10) than clusterings with the same 

number of clusters from 20 randomly sampled 𝐺1 vectors, indicating better intrinsic validity 

of the unconfounded clustering. 
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To validate our reduced space is unconfounded and leads to a better capturing of the 

population structure, we assessed the statistical association between the derived clustering 

and the ancestry axes and confounders. The Kruskal-Wallis test (nonparametric ANOVA) 

showed both the original and the unconfounded clusterings are significantly associated with 

all ancestry axes (P-value< 0.05), suggesting their relationships with population structure 

(Table 1). Yet the original clustering also has significant associations with most confounders, 

especially age and camera system, while the unconfounded clustering has no significant 

associations with any confounders, validating our unconfounding strategy. The effective 

reduction of the influence by camera system, which resembles the batch effect, also indicates 

the strength of the confounder correction. 

Variable Statistical Test 
Adj. P-value 

(original) 
Adj. P-value 

(unconfounded) 

Ancestry axis 1 Kruskal-Wallis 7.24e-40 2.99e-9 
Ancestry axis 2 Kruskal-Wallis 1.04e-11 2.29e-7 
Ancestry axis 3 Kruskal-Wallis 6.07e-11 2.69e-3 
Ancestry axis 4 Kruskal-Wallis 8.11e-22 8.16e-11 

Age Kruskal-Wallis 9.36e-8 0.888 
Sex Chi-squared 0.118 0.899 

Height Kruskal-Wallis 8.38e-2 0.888 
Weight Kruskal-Wallis 5.51e-2 0.951 

BMI Kruskal-Wallis 2.19e-3 0.899 
Camera system Chi-squared 3.01e-78 0.899 

Face size Kruskal-Wallis 3.72e-2 0.888 

Table 1: Adjusted P-values of the statistical tests between the clustering of 𝑮𝟏 and every 

ancestry axis and confounder. Kruskal-Wallis test was used for continuous variables and Chi-

squared test for categorical variables. All P-values have been corrected for multiple testing via 

the Benjamini-Hochberg (BH) procedure. Column 3 are adjusted P-values from the original 

clustering based on all vectors in 𝐺1  while column 4 from the unconfounded clustering. 

Adjusted P-values lower than 0.05 (threshold for significance) are in bold. 

To investigate if the derived subgroups from the unconfounded 𝐺1 clustering capture well the 

population structure, we adopted 3,519 European ancestry informative markers (EuroAIMs) 

found by Tian et al. (Tian et al. 2009), which are SNPs capable of distinguishing European 

subpopulations. We first mapped the SNP embedding 𝐺2 to the space of 𝐺1 and then, in the 

joint space, selected 3,519 SNPs with highest cosine similarities to the centroids of derived 

subgroups, which drive the clustering of individuals. We selected the same number of SNPs as 

the EuroAIMs for better comparison. Because only 13 EuroAIMs were originally included in 

our dataset, we looked at the gene level and found that 856 out of the 3,519 selected SNPs 

are located in the same genes as the EuroAIMs. A hypergeometric test showed that this 

fraction is significantly (P-value = 2.15e-63) higher than a random selection from all SNPs in 

our dataset, indicating that the genetic basis of the derived subgrouping is statistically 

significantly associated with the European population structure. We also checked for the 

subgroups derived from the original 𝐺1 clustering and found only 40 out of 3,519 selected 

SNPs that are located in the EuroAIM genes. The P-value of 1 from the hypergeometric test 

also implied this fraction is not statistically higher than a random selection. This result further 
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proved that our deconfounding strategy has successfully led to population subgroups that 

could better highlight the population structure. 

After showing the validity of our unconfounded population subgrouping, we focused on the 

characterization of two subgroups that are most associated with the four ancestry axes (Supp. 

Table 1), namely subgroup 2 and 7. The top 0.1% SNPs selected for population subgroup 2 

were significantly enriched in over 500 HPO terms, with the top 20 terms clearly related to 

skeletal morphology or bone formation (Fig. 7A). It is in line with the highlighted areas on the 

face (Fig. 7B), e.g., the nasal bone, the zygomatic bone, maxilla, and most part of the mandible. 

This result characterized population subgroup 2 with facial skeleton. Note that the frontal 

bone does not show up as much as the facial bones, implying the different morphology of 

cranial and facial skeleton (Anderson et al. 2024). Some other enriched HPO terms involve 

anemia, telangiectasia and neutrophil, which are related to the blood. Whereas the genetic 

representation of population subgroup 7 found 72 significantly associated HPO terms in total, 

and many of the top 20 terms are strongly involved in kidney function (Fig. 7C). Meanwhile, 

the eye area was remarkably underlined on the mean face (Fig. 7D), which supports the 

common embryogenic stage of eyes and kidneys and the reported relationship between eye 

and kidney diseases (Bodaghi, Massamba and Izzedine 2014). Therefore, population subgroup 

7 is likely characterized by eye morphology related to kidney function. Other enriched terms 

indicate the involvement of kidney function in diabetes, hair development, tooth 

development, etc. 
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Fig. 7: Genetic and facial representation for population subgroup 2 (top, A and B) and 7 

(bottom, C and D). The genetic representation was obtained via GREAT analysis (left) for the 

top 20 HPO terms enriched in the top 0.1% SNPs highlighted for population subgroup 2 (A) 

and 7 (C). We used the default and recommended settings of GREAT analysis with binomial 

test and BH correction. For the facial representation, the cosine similarity between each facial 

landmark and the centroid of subgroup 2 (B) and 7 (D) separately was plotted on the mean 

face. Red color indicates higher value while blue color indicates lower value. 

5 Discussion and conclusion 
In this study, we proposed INMTD, a framework that integrates both 2D matrices and 3D 

tensors for unconfounded clustering, and applied it to a real-life facial-genomic dataset to 

evaluate its performance and find an unconfounded subgrouping for European population 

structure. We derived 20 unconfounded population subgroups with their representative 

genetic and facial characteristics, providing the potential for more precise healthcare towards 

each subpopulation. 
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This work applies INMTD to facial and genomic data, which reflect a large fraction of the 

population structure. A comprehensive subgrouping of population structure has the potential 

to facilitate precision medicine where individuals in each population subgroup may receive 

tailored medical decisions based on their intrinsic characteristics (Saria and Goldenberg 2015; 

Loh, Cao and Zhou 2019). For instance, special medical treatment may be given to individuals 

in subgroup 2 for their different skeleton development and individuals in subgroup 7 for their 

distinct kidney function.  

While classic matrix or tensor decomposition models only focus on a single dataset and 

current integrative matrix factorization models cannot deal with higher-dimensional data 

structures, INMTD is able to jointly decompose both matrix and tensor data. Another key 

feature of INMTD is its orthogonality constraint on 𝐺1 for better clustering and interpretation. 

An orthogonal matrix has all its vectors independent to each other, and therefore, every 

vector can be investigated specifically for its characteristics. We further normalized the 

vectors of 𝐺1  to make them orthonormal, resembling naturally a cluster indicator matrix. 

Optionally, we can impose orthogonality on any embedding if needed. 

As an extension of joint NMF model, INMTD has the potential to predict facial images from 

genotypes or vice versa of new samples, in a similar fashion as Akata et al. (Akata, Thurau and 

Bauckhage 2011) In the former case, given the genotypes 𝑥12 of an individual that has not 

been seen by the model, we first solve min
𝑔1≥0

𝐽 = ‖𝑥12 − 𝑔1𝑆12𝐺2
𝑇‖𝐹

2  for 𝑔1 and then predict its 

facial image 𝓍134 = 𝒮134 ×1 𝑔1 ×2 𝐺3 ×3 𝐺4. Alternatively, we could find the closest image 

from the cohort to 𝓍134  according to cosine similarity or the image whose corresponding 

embedding vector in 𝐺1 space is closest to 𝑔1. In addition, a new sample can be classified into 

one of the derived subgroups by assigning 𝑔1 to its closest cluster centroid. 

Even though INMTD was illustrated in a facial-genomic dataset for population subgrouping, it 

is not restricted to facial images and genomic data. INMTD can be applied to any 2D and 3D 

datasets for joint clustering, as long as they are non-negative or can be converted to non-

negative values, e.g. transcriptomics or epigenomics as 2D matrices and CT scans or time 

series data as 3D tensors. It is also possible to further extend INMTD to deal with more than 

two data types or data of higher dimensions, e.g. a moving 3D image (4D), by adding extra 

embeddings to the model and objective function. 

There are two main limitations of INMTD for future improvements. The first one is that it 

determines the ranks of each embedding based on a rule of thumb because of the extremely 

large scale of genomic dataset. Nevertheless, in most cases the data dimensionality would be 

feasible for INMTD model on a modern computer or computing server and the user could 

choose the optimal ranks via cross-validation or other non-heuristic methods. The other 

potential deficiency comes from the post-hoc confounder correction, which removes 

confounded vectors but in a fairly strict manner with the risk of ‘over-correcting’. A more 

compromising strategy could be adding a regularization term in the objective function to 

iteratively minimize the confounding effect in 𝐺1, which indicates our future work. 

In conclusion, with the surge in biological data in diverse formats and the growing demand for 

personalized medicine with Big Data, INMTD is envisaged to become an essential tool for 
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integrating multi-view datasets of varying dimensions, enabling meaningful and 

unconfounded clustering. We are confident that INMTD has the potential of widespread 

adoption in the future due to its exceptional performance and ease-of-interpretation. 

Data availability 
For the 3D Facial Norms dataset, genotypic markers are available to the research community 

through the dbGaP controlled-access repository (http:// www.ncbi.nlm.nih.gov/gap) at 

accession #phs000929.v1.p1. The raw source data for the phenotypes - the 3D facial surface 

models in .obj format - are available through the FaceBase Consortium 

(https://www.facebase.org) at accession #FB00000491.01. Access to these 3D facial surface 

models requires proper institutional ethics approval and approval from the FaceBase data 

access committee. The PSU and IUPUI datasets were not collected with broad data sharing 

consent. Code for INMTD is publicly available on GitHub: https://github.com/ZuqiLi/INMTD. 
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