Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121 (1966), 190–193, 10.3181/00379727-121-30734.
McIntosh, K., Kapikian, A.Z., Turner, H.C., Hartley, J.W., Parrott, R.H., Chanock, R.M., Seroepidemiologic studies of coronavirus infection in adults and children. Am. J. Epidemiol. 91 (1970), 585–592, 10.1093/oxfordjournals.aje.a121171.
van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Wertheim-van Dillen, P.M.E., Kaandorp, J., Spaargaren, J., Berkhout, B., Identification of a new human coronavirus. Nat. Med. 10 (2004), 368–373, 10.1038/nm1024.
Woo, P.C.Y., Lau, S.K.P., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H.L., Poon, R.W.S., Cai, J.J., Luk, W.K., et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79 (2005), 884–895, 10.1128/JVI.79.2.884-895.2005.
Matoba, Y., Abiko, C., Ikeda, T., Aoki, Y., Suzuki, Y., Yahagi, K., Matsuzaki, Y., Itagaki, T., Katsushima, F., Katsushima, Y., Mizuta, K., Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan. Jpn. J. Infect. Dis. 68 (2015), 138–141, 10.7883/yoken.JJID.2014.266.
Otieno, J.R., Cherry, J.L., Spiro, D.J., Nelson, M.I., Trovão, N.S., Origins and Evolution of Seasonal Human Coronaviruses. Viruses, 14, 2022, 1551, 10.3390/v14071551.
Zhong, N.S., Zheng, B.J., Li, Y.M., Xie, Z.H., Chan, K.H., Li, P.H., Tan, S.Y., Chang, Q., Xie, J.P., Liu, X.Q., et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 362 (2003), 1353–1358, 10.1016/s0140-6736(03)14630-2.
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 323 (2020), 1061–1069, 10.1001/jama.2020.1585.
V'Kovski, P., Kratzel, A., Steiner, S., Stalder, H., Thiel, V., Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19 (2021), 155–170, 10.1038/s41579-020-00468-6.
Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282 (2015), 1–23, 10.1007/978-1-4939-2438-7_1.
Yan, L., Zhang, Y., Ge, J., Zheng, L., Gao, Y., Wang, T., Jia, Z., Wang, H., Huang, Y., Li, M., et al. Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat. Commun., 11, 2020, 5874, 10.1038/s41467-020-19770-1.
Esposito, G., Hunashal, Y., Percipalle, M., Fogolari, F., Venit, T., Leonchiks, A., Gunsalus, K.C., Piano, F., Percipalle, P., Assessing nanobody interaction with SARS-CoV-2 Nsp9. PLoS One, 19, 2024, e0303839, 10.1371/journal.pone.0303839.
Esposito, G., Hunashal, Y., Percipalle, M., Venit, T., Dieng, M.M., Fogolari, F., Hassanzadeh, G., Piano, F., Gunsalus, K.C., Idaghdour, Y., Percipalle, P., NMR-Based Analysis of Nanobodies to SARS-CoV-2 Nsp9 Reveals a Possible Antiviral Strategy Against COVID-19. Adv. Biol., 5, 2021, e2101113, 10.1002/adbi.202101113.
Ponnusamy, R., Moll, R., Weimar, T., Mesters, J.R., Hilgenfeld, R., Variable oligomerization modes in coronavirus non-structural protein 9. J. Mol. Biol. 383 (2008), 1081–1096, 10.1016/j.jmb.2008.07.071.
Zhang, C., Chen, Y., Li, L., Yang, Y., He, J., Chen, C., Su, D., Structural basis for the multimerization of nonstructural protein nsp9 from SARS-CoV-2. Mol. Biomed., 1, 2020, 5, 10.1186/s43556-020-00005-0.
Yan, L., Ge, J., Zheng, L., Zhang, Y., Gao, Y., Wang, T., Huang, Y., Yang, Y., Gao, S., Li, M., et al. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell 184 (2021), 184–193.e10, 10.1016/j.cell.2020.11.016.
Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow, N., Owens, R., Gilbert, R., Davidson, A., et al. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure 12 (2004), 341–353, 10.1016/j.str.2004.01.016.
Miknis, Z.J., Donaldson, E.F., Umland, T.C., Rimmer, R.A., Baric, R.S., Schultz, L.W., Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. J. Virol. 83 (2009), 3007–3018, 10.1128/JVI.01505-08.
Zeng, Z., Deng, F., Shi, K., Ye, G., Wang, G., Fang, L., Xiao, S., Fu, Z., Peng, G., Dimerization of Coronavirus nsp9 with Diverse Modes Enhances Its Nucleic Acid Binding Affinity. J. Virol., 92, 2018, e00692-18, 10.1128/JVI.00692-18.
Egloff, M.P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., Snijder, E.J., Gorbalenya, A.E., Cambillau, C., Canard, B., The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA 101 (2004), 3792–3796, 10.1073/pnas.0307877101.
Littler, D.R., Gully, B.S., Colson, R.N., Rossjohn, J., Crystal Structure of the SARS-CoV-2 Non-structural Protein 9, Nsp9. iScience, 23, 2020, 101258, 10.1016/j.isci.2020.101258.
Dong, J., Huang, B., Jia, Z., Wang, B., Gallolu Kankanamalage, S., Titong, A., Liu, Y., Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity. Emerg. Microb. Infect. 9 (2020), 1034–1036, 10.1080/22221751.2020.1768806.
Huo, J., Le Bas, A., Ruza, R.R., Duyvesteyn, H.M.E., Mikolajek, H., Malinauskas, T., Tan, T.K., Rijal, P., Dumoux, M., Ward, P.N., et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 27 (2020), 846–854, 10.1038/s41594-020-0469-6.
Ma, H., Zhang, X., Zheng, P., Dube, P.H., Zeng, W., Chen, S., Cheng, Q., Yang, Y., Wu, Y., Zhou, J., et al. Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Res. 32 (2022), 831–842, 10.1038/s41422-022-00700-3.
Maeda, R., Fujita, J., Konishi, Y., Kazuma, Y., Yamazaki, H., Anzai, I., Watanabe, T., Yamaguchi, K., Kasai, K., Nagata, K., et al. A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun. Biol., 5, 2022, 669, 10.1038/s42003-022-03630-3.
Wrapp, D., De Vlieger, D., Corbett, K.S., Torres, G.M., Wang, N., Van Breedam, W., Roose, K., van Schie, L., VIB-CMB COVID-19 Response Team. Hoffmann, M., et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181 (2020), 1004–1015.e15, 10.1016/j.cell.2020.04.031.
Plessner, M., Melak, M., Chinchilla, P., Baarlink, C., Grosse, R., Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290 (2015), 11209–11216, 10.1074/jbc.M114.627166.
Hassett, K.J., Benenato, K.E., Jacquinet, E., Lee, A., Woods, A., Yuzhakov, O., Himansu, S., Deterling, J., Geilich, B.M., Ketova, T., et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids 15 (2019), 1–11, 10.1016/j.omtn.2019.01.013.
Wei, W., Sun, J., Guo, X.Y., Chen, X., Wang, R., Qiu, C., Zhang, H.T., Pang, W.H., Wang, J.C., Zhang, Q., Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery. ACS Appl. Mater. Interfaces 12 (2020), 14839–14854, 10.1021/acsami.9b22781.
Xie, X., Muruato, A., Lokugamage, K.G., Narayanan, K., Zhang, X., Zou, J., Liu, J., Schindewolf, C., Bopp, N.E., Aguilar, P.V., et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe 27 (2020), 841–848.e3, 10.1016/j.chom.2020.04.004.
Kim, D.K., Weller, B., Lin, C.W., Sheykhkarimli, D., Knapp, J.J., Dugied, G., Zanzoni, A., Pons, C., Tofaute, M.J., Maseko, S.B., et al. A proteome-scale map of the SARS-CoV-2-human contactome. Nat. Biotechnol. 41 (2023), 140–149, 10.1038/s41587-022-01475-z.
Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon, K.H. 3rd, Kato, T., Lee, R.E., Yount, B.L., Mascenik, T.M., et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 182 (2020), 429–446.e14, 10.1016/j.cell.2020.05.042.
Bitounis, D., Jacquinet, E., Rogers, M.A., Amiji, M.M., Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23 (2024), 281–300, 10.1038/s41573-023-00859-3.
Zaffagni, M., Harris, J.M., Patop, I.L., Pamudurti, N.R., Nguyen, S., Kadener, S., SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome. Elife, 11, 2022, e71945, 10.7554/eLife.71945.
Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W.C., Uhl, S., Hoagland, D., Møller, R., Jordan, T.X., Oishi, K., Panis, M., Sachs, D., et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181 (2020), 1036–1045.e9, 10.1016/j.cell.2020.04.026.
Chakraborty, D., Agrawal, A., Maiti, S., Rapid identification and tracking of SARS-CoV-2 variants of concern. Lancet 397 (2021), 1346–1347, 10.1016/S0140-6736(21)00470-0.
Sun, L., Li, P., Ju, X., Rao, J., Huang, W., Ren, L., Zhang, S., Xiong, T., Xu, K., Zhou, X., et al. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell 184 (2021), 1865–1883.e20, 10.1016/j.cell.2021.02.008.
Wyler, E., Mösbauer, K., Franke, V., Diag, A., Gottula, L.T., Arsiè, R., Klironomos, F., Koppstein, D., Hönzke, K., Ayoub, S., et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience, 24, 2021, 102151, 10.1016/j.isci.2021.102151.
Bhowal, C., Ghosh, S., Ghatak, D., De, R., Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol. Cell. Biochem. 478 (2023), 1325–1343, 10.1007/s11010-022-04593-z.
Gatti, P., Ilamathi, H.S., Todkar, K., Germain, M., Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2. Front. Pharmacol., 11, 2020, 578599, 10.3389/fphar.2020.578599.
Singh, K.K., Chaubey, G., Chen, J.Y., Suravajhala, P., Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319 (2020), C258–C267, 10.1152/ajpcell.00224.2020.
Zhao, X., Chen, D., Li, X., Griffith, L., Chang, J., An, P., Guo, J.T., Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. J. Mol. Biol., 434, 2022, 167438, 10.1016/j.jmb.2021.167438.
Pizzorno, A., Padey, B., Julien, T., Trouillet-Assant, S., Traversier, A., Errazuriz-Cerda, E., Fouret, J., Dubois, J., Gaymard, A., Lescure, F.X., et al. Characterization and Treatment of SARS-CoV-2 in Nasal and Bronchial Human Airway Epithelia. Cell Rep. Med., 1, 2020, 100059, 10.1016/j.xcrm.2020.100059.
Robinot, R., Hubert, M., de Melo, G.D., Lazarini, F., Bruel, T., Smith, N., Levallois, S., Larrous, F., Fernandes, J., Gellenoncourt, S., et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat. Commun., 12, 2021, 4354, 10.1038/s41467-021-24521-x.
Jonsdottir, H.R., Siegrist, D., Julien, T., Padey, B., Bouveret, M., Terrier, O., Pizzorno, A., Huang, S., Samby, K., Wells, T.N.C., et al. Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro. Biomed. Pharmacother., 150, 2022, 113058, 10.1016/j.biopha.2022.113058.
Pinto, A.L., Rai, R.K., Brown, J.C., Griffin, P., Edgar, J.R., Shah, A., Singanayagam, A., Hogg, C., Barclay, W.S., Futter, C.E., Burgoyne, T., Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium. Nat. Commun., 13, 2022, 1609, 10.1038/s41467-022-29255-y.
Burtscher, J., Cappellano, G., Omori, A., Koshiba, T., Millet, G.P., Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. iScience, 23, 2020, 101631, 10.1016/j.isci.2020.101631.
Makiyama, K., Hazawa, M., Kobayashi, A., Lim, K., Voon, D.C., Wong, R.W., NSP9 of SARS-CoV-2 attenuates nuclear transport by hampering nucleoporin 62 dynamics and functions in host cells. Biochem. Biophys. Res. Commun. 586 (2022), 137–142, 10.1016/j.bbrc.2021.11.046.
Abbasian, M.H., Mahmanzar, M., Rahimian, K., Mahdavi, B., Tokhanbigli, S., Moradi, B., Sisakht, M.M., Deng, Y., Global landscape of SARS-CoV-2 mutations and conserved regions. J. Transl. Med., 21, 2023, 152, 10.1186/s12967-023-03996-w.
Bao, G., Tang, M., Zhao, J., Zhu, X., Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res., 11, 2021, 6, 10.1186/s13550-021-00750-5.
Lokugamage, M.P., Vanover, D., Beyersdorf, J., Hatit, M.Z.C., Rotolo, L., Echeverri, E.S., Peck, H.E., Ni, H., Yoon, J.K., Kim, Y., et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5 (2021), 1059–1068, 10.1038/s41551-021-00786-x.
Kim, J., Jozic, A., Lin, Y., Eygeris, Y., Bloom, E., Tan, X., Acosta, C., MacDonald, K.D., Welsher, K.D., Sahay, G., Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation. ACS Nano 16 (2022), 14792–14806, 10.1021/acsnano.2c05647.
Leong, E.W.X., Ge, R., Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines, 10, 2022, 2179, 10.3390/biomedicines10092179.
Li, B., Manan, R.S., Liang, S.Q., Gordon, A., Jiang, A., Varley, A., Gao, G., Langer, R., Xue, W., Anderson, D., Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41 (2023), 1410–1415, 10.1038/s41587-023-01679-x.
Van Heeke, G., Allosery, K., De Brabandere, V., De Smedt, T., Detalle, L., de Fougerolles, A., Nanobodies(R) as inhaled biotherapeutics for lung diseases. Pharmacol. Ther. 169 (2017), 47–56, 10.1016/j.pharmthera.2016.06.012.
Kon, E., Elia, U., Peer, D., Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 73 (2022), 329–336, 10.1016/j.copbio.2021.09.016.
Small, G.I., Fedorova, O., Olinares, P.D.B., Chandanani, J., Banerjee, A., Choi, Y.J., Molina, H., Chait, B.T., Darst, S.A., Campbell, E.A., Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN domain. Mol. Cell 83 (2023), 3921–3930.e7, 10.1016/j.molcel.2023.10.001.
Dellicour, S., Durkin, K., Hong, S.L., Vanmechelen, B., Martí-Carreras, J., Gill, M.S., Meex, C., Bontems, S., André, E., Gilbert, M., et al. A Phylodynamic Workflow to Rapidly Gain Insights into the Dispersal History and Dynamics of SARS-CoV-2 Lineages. Mol. Biol. Evol. 38 (2021), 1608–1613, 10.1093/molbev/msaa284.
Baggen, J., Persoons, L., Vanstreels, E., Jansen, S., Van Looveren, D., Boeckx, B., Geudens, V., De Man, J., Jochmans, D., Wauters, J., et al. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat. Genet. 53 (2021), 435–444, 10.1038/s41588-021-00805-2.
Sharma, S., Vercruysse, T., Sanchez-Felipe, L., Kerstens, W., Rasulova, M., Bervoets, L., De Keyzer, C., Abdelnabi, R., Foo, C.S., Lemmens, V., et al. Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters. Nat. Commun., 13, 2022, 6644, 10.1038/s41467-022-34439-7.
Bruel, T., Stéfic, K., Nguyen, Y., Toniutti, D., Staropoli, I., Porrot, F., Guivel-Benhassine, F., Bolland, W.H., Planas, D., Hadjadj, J., et al. Longitudinal analysis of serum neutralization of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 in patients receiving monoclonal antibodies. Cell Rep. Med., 3, 2022, 100850, 10.1016/j.xcrm.2022.100850.
Coupeau, D., Burton, N., Lejeune, N., Loret, S., Petit, A., Pejakovic, S., Poulain, F., Bonil, L., Trozzi, G., Wiggers, L., et al. SARS-CoV-2 Detection for Diagnosis Purposes in the Setting of a Molecular Biology Research Lab. Methods Protoc., 3, 2020, 59, 10.3390/mps3030059.
Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (2014), 2114–2120, 10.1093/bioinformatics/btu170.
Kim, D., Langmead, B., Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12 (2015), 357–360, 10.1038/nmeth.3317.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 (2009), 2078–2079, 10.1093/bioinformatics/btp352.
Grubaugh, N.D., Gangavarapu, K., Quick, J., Matteson, N.L., De Jesus, J.G., Main, B.J., Tan, A.L., Paul, L.M., Brackney, D.E., Grewal, S., et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol., 20, 2019, 8, 10.1186/s13059-018-1618-7.
Huang, D.W., Sherman, B.T., Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (2009), 44–57, 10.1038/nprot.2008.211.