[en] Dynamic Landfill Mining (DLM) aims at the sustainable integration of landfill resources-materials, energy and land-into the circular economy. The establishment of this concept provides a new incentive to advance the use of geophysical methods as economic tools for landfill characterization. Yet, setting the waste composition as a main target adds some challenges to the more conventional geophysical survey practice on landfills tailored to environmental risk assessment. In this contribution, we give an overview of these challenges and recommend a set of consistent solutions that can be adopted to deal with them in an integrated way. The challenges and presented solutions will be illustrated for two specific DLM cases, for which some preliminary geophysical survey results are included in this extended abstract.
Disciplines :
Earth sciences & physical geography
Author, co-author :
van de Vijver, Ellen; Ghent University, Belgium
Manrique, Itzel Isunza; University of Liège, Belgium
Bobe, Christin; Ghent University, Belgium ; Universität Osnabrück, Germany
Caterina, David ; Université de Liège - ULiège > Urban and Environmental Engineering
Hermans, Thomas; Ghent University, Belgium
Wille, Eddy; Public Waste Agency of Flanders (OVAM)
Nguyen, Frédéric ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Language :
English
Title :
Geophysics in support of dynamic landfill management: Moving beyond the challenges
Publication date :
01 September 2021
Event name :
First International Meeting for Applied Geoscience & Energy Expanded Abstracts
This research has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185, and from the Interreg North-West Europe (NWE) Programme 2017-2020 and the Walloon Government under the RAWFILL project. Both projects have been developed by partners of the European Enhanced Landfill Mining Consortium (EURELCO).This research has received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185, and from the Interreg North-West Europe (NWE) Programme 2017–2020 and the Walloon Government under the RAWFILL project. Both projects have been developed by partners of the European Enhanced Landfill Mining Consortium (EURELCO).
Bellezoni, R. A., K. I. Cristiano, V. R. Elis, W. da Silva Paganini, and J. Hamada, 2014, Small-scale landfills: impacts on groundwater and soil: Environmental Earth Sciences, 71, 2429-2439, doi: https://doi.org/10.1007/s12665-013-2643-1.
Bernstone, C., T. Dahlin, T. Ohlsson, and W. Hogland, 2000, DC-resistivity mapping of internal landfill structures: two pre-excavation surveys: Environmental Geology, 39, 360-371, doi: https://doi.org/10.1007/s002540050015.
Cartwright, K., and M. R. McComas, 1968, Surveys in the vicinity of sanitary landfills in northeastern Illinois: Ground Water, 6, 23-30, doi: https://doi.org/10.1111/j.1745-6584.1968.tb01661.x.
Çinar, H., S. Altundas, E. Ersoy, K. Bak, and N. Bayrak, 2016, Application of two geophysical methods to characterize a former waste disposal site of the Trabzon-Moloz district in Turkey: Environmental Earth Sciences, 75, 52, doi: https://doi.org/10.13140/RG.2.1.2210.0561.
Dino, G. A., N. Mehta, P. Rossetti, F. Ajmone-Marsan, and D. A. De Luca, 2018, Sustainable approach towards extractive waste management: Two case studies from Italy: Resources Policy, 59, 33-43, doi: https://doi.org/10.1016/j.resourpol.2018.07.009.
Dumont, G., T. Pilawski, P. Dzaomuho-Lenieregue, S. Hiligsmann, F. Delvigne, P. Thonart, T. Robert, F. Nguyen, and T. Hermans, 2016, Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill: Waste Management, 55, 129-140, doi: https://doi.org/10.1016/j.wasman.2016.02.013.
Dumont, G., T. Robert, N. Marck, and F. Nguyen, 2017, Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites: Journal of Applied Geophysics, 145, 74-83, doi: https://doi.org/10.1016/j.jappgeo.2017.07.013.
Dumont, G., T. Robert, and F. Nguyen, 2018, Electrical resistivity tomography and distributed temperature sensing monitoring to assess the efficiency of horizontal recirculation drains on retrofit bioreactor landfills: Geophysics, 83, no. 2, B13-B23, doi: https://doi.org/10.1190/geo2016-0622.1.
Einhäupl, P., J. Krook, N. Svensson, K. Van Acker, and S. Van Passel, 2019a, Eliciting stakeholder needs - An anticipatory approach assessing enhanced landfill mining: Waste Management, 98, 113-125, doi: https://doi.org/10.1016/j.wasman.2019.08.009.
Einhäupl, P., K. Van Acker, N. Svensson, and S. Van Passel, 2019b, Developing stakeholder archetypes for enhanced landfill mining: Detritus, 8, 109-124, doi: https://doi.org/10.31025/2611-4135/2019.13882.
Flores-Orozco, A., J. Gallistl, M. Steiner, C. Brandstätter, and J. Fellner, 2020, Mapping biogeochemically active zones in landfills with induced polarization imaging: The Heferlbach landfill: Waste Management, 107, 121-132, doi: https://doi.org/10.1016/j.wasman.2020.04.001.
Hermans, T., and J. Irving, 2017, Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularization: Near Surface Geophysics, 15, 13-25, doi: https://doi.org/10.3997/1873-0604.2016047.
Hernández Parrodi, J. C., H. Lucas, M. Gigantino, G. Sauve, J. L. Esguerra, P. Einhäupl, D. Vollprecht, R. Pomberger, B. Friedrich, K. Van Acker, J. Krook, N. Svensson, and S. Van Passel, 2019, Integration of resource recovery into current waste management through (enhanced) landfill mining: Detritus, 8, 141-156, doi: https://doi.org/10.31025/2611-4135/2019.13884.
Inauen, C. M., A. Brooks, D. Caterina, J. E. Chambers, B. Dashwood, A. Dimech, D. A. Gunn, I. Isunza Manrique, O. Neal, X. Piquet, and D. Scott, 2020, Combining an integrated geophysical survey into a landfill model: A case study from Emersons Green, UK: Presented at the EGU General Assembly 2020.
Isunza Manrique, I., D. Caterina, T. Hermans, and F. Nguyen, 2019, Probabilistic joint interpretation of geoelectrical and passive source seismic data for landfill characterization: Presented at the 2019 AGU Fall Meeting.
Jones, P. T., D. Geysen, Y. Tielemans, S. Van Passel, Y. Pontikes, B. Blanpain, M. Quaghebeur, and N. Hoekstra, 2013, Enhanced Landfill Mining in view of multiple resource recovery: a critical review: Journal of Cleaner Production, 55, 45-55, doi: https://doi.org/10.1016/j.jclepro.2012.05.021.
Jones, P. T., E. Wille, and J. Krook, 2018, 2nd ELFM Seminar in the European Parliament: 5 Lessons Learned, Why we need to develop a broad Dynamic Landfill Management strategy and vision for Europe's 500,000 landfills, https://www.nweurope.eu/media/5206/newmine_policybrief_december_2018.pdf.
Meju, M. A., 2000, Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach: Journal of Applied Geophysics, 44, 115-150, doi: https://doi.org/10.1016/S0926-9851(00)00011-2.
Nguyen, 2020, Assessment of magnetic data for landfill characterization by means of a probabilistic approach: Presented at the EGU General Assembly 2020.
Nguyen, F., R. Ghose, I. Isunza Manrique, T. Robert, and G. Dumont, 2018, Managing past landfills for future site development: A review of the contribution of geophysical methods, in P. T. Jones, and L. Machiels, eds., Proceedings of the 4th International Symposium on Enhanced Landfill Mining, Mechelen, Belgium, 27-36.
Pellerin, L., 2002, Applications of electrical and electromagnetic methods for environmental and geotechnical investigations: Surveys in Geophysics, 23, 101-132, doi: https://doi.org/10.1023/A:1015044200567.
Romero-Ruiz, A., N. Linde, T. Keller, and D. Or, 2018, A review of geophysical methods for soil structure characterization: Reviews of Geophysics, 56, 672-697, doi: https://doi.org/10.1029/2018RG000611.
Sauve, G., and K. Van Acker, 2020, The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making: Journal of Environmental Management, 261, 110216, doi: https://doi.org/10.1016/j.jenvman.2020.110216.
Tezkan, B., 1999. A review of environmental applications of quasi-stationary electromagnetic techniques: Surveys in Geophysics, 20, 279-308, doi: https://doi.org/10.1023/A:1006669218545.
Van De Vijver, E., 2017, Proximal soil sensing in the context of urban (re)development: an evaluation of multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar at landfills and industrial sites: PhD dissertation, Ghent University.
Van De Vijver, E., C. Bobe, and M. Van Meirvenne, 2019, Representative sampling of landfills: a robust procedure for selecting trench locations based on frequency-domain electromagnetic induction survey data: Presented at the 2019 AGU Fall Meeting.
Van De Vijver, E., and M. Van Meirvenne, 2016, Delving into the potential of multi-receiver electromagnetic induction surveying for enhanced landfill exploration in view of ELFM, in M. J. Pereira, M. T. Carvalho, and P. Falcão Neves, eds., Proceedings of the 3rd International Symposium on Enhanced Landfill Mining, Lisboa, Portugal, 175-187.
Vollprecht, D., C. Bobe, R. Stiegler, E. Van De Vijver, T. Wolfsberger, B. Küppers, and R. Scholger, 2019, Relating magnetic properties of municipal solid waste constituents to iron content - Implications for Enhanced Landfill Mining: Detritus, 8, 31-46, doi: https://doi.org/10.31025/2611-4135/2019.13876.
Vollprecht, D., L. Machiels, and P. T. Jones, 2021, The EU training network for resource recovery through enhanced landfill mining-A review: Processes, 9, 394, doi: https://doi.org/10.3390/pr9020394.
Watlet, A., C. Inauen, B. Dashwood, J. Whiteley, T. Creusel, I. Isunza Manrique, D. Caterina, D. Scott, and J. Chambers, 2020, Integrated geophysical imaging of a solid waste landfill (Greater London, UK): Presented at the EGU General Assembly 2020.
Wijesekara, S. S. R. M. D. H. R., S. S. Mayakaduwa, A. R. Siriwardana, N. de Silva, B. F. A. Basnayake, K. Kawamoto, and M. Vithanage, 2014, Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka: Environmental Earth Sciences, 72, 1707-1719, doi: https://doi.org/10.1007/s12665-014-3075-2.
Yamanaka, M., T. Hachimura, and S. Hasegawa, 2015, Distribution of landfill by geophysical exploration methods at illegal industrial wastes disposal site: International Journal of Geomate, 9, 1342-1347, doi: https://doi.org/10.21660/2015.17.4306.
Zanetti, M., and A. Godio, 2006, Recovery of foundry sands and iron fractions from an industrial waste landfill: Resources, Conservation and Recycling, 48, 396-411, doi: https://doi.org/10.1016/j.resconrec.2006.01.008.