Impact of pH on the structure, interfacial and foaming properties of pea protein isolate: Investigation of the structure - Function relationship. - 2024
Foaming properties; Pea protein; Protein structure
Abstract :
[en] This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.
Disciplines :
Food science
Author, co-author :
Othmeni, Ines ; Université de Liège - ULiège > TERRA Research Centre
Ge, J., Sun, C., Corke, H., Gul, K., Gan, R., Fang, Y., The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: current status, challenges, and perspectives. Compr. Rev. Food Sci. Food Saf. 19 (2020), 1835–1876, 10.1111/1541-4337.12573.
Zhu, P., Huang, W., Guo, X., Chen, L., Strong and elastic pea protein hydrogels formed through pH-shifting method. Food Hydrocoll., 117, 2021, 10.1016/j.foodhyd.2021.106705.
Sha, L., Koosis, A.O., Wang, Q., True, A.D., Xiong, Y.L., Interfacial dilatational and emulsifying properties of ultrasound-treated pea protein. Food Chem., 350, 2021, 10.1016/j.foodchem.2021.129271.
Campbell, G.M., Mougeot, E., Creation and characterisation of aerated food products. Trends Food Sci. Technol. 10 (1999), 283–296, 10.1016/S0924-2244(00)00008-X.
Gallego-Juárez, J.A., Rodríguez, G., Riera, E., Cardoni, A., Ultrasonic defoaming and debubbling in food processing and other applications. Power Ultrasonics: Applications of High-Intensity Ultrasound, Second edition, 2023, 687–699, 10.1016/B978-0-12-820254-8.00032-4.
Jarpa-Parra, M., Bamdad, F., Wang, Y., Tian, Z., Temelli, F., Han, J., Chen, L., Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT Food Sci. Technol. 57 (2014), 461–469, 10.1016/j.lwt.2014.02.035.
Anton, M., Nau, F., Lechevalier, V., Meynier, A., Presentation of the Ovoproduct Matrix, Alteration of Ovoproducts: From Metabolomics to Online Control. 2018, 1–50, 10.1016/B978-1-78548-271-7.50001-8.
Chang, L., Chen, B., Rao, J., Synergistic effect of pH-shift and controlled heating on improving foaming properties of pea vicilin and its adsorption behavior at the air-water interface. Food Hydrocoll., 145, 2023, 109022, 10.1016/j.foodhyd.2023.109022.
Kristensen, H.T., Denon, Q., Tavernier, I., Gregersen, S.B., Hammershøj, M., Van der Meeren, P., Dewettinck, K., Dalsgaard, T.K., Improved food functional properties of pea protein isolate in blends and co-precipitates with whey protein isolate. Food Hydrocoll., 113, 2021, 106556, 10.1016/J.FOODHYD.2020.106556.
Wouters, A.G.B., Schaefer, S., Joye, I.J., Delcour, J.A., Relating the structural, air-water interfacial and foaming properties of wheat (Triticum aestivum L.) gliadin and maize (Zea mays L.) zein based nanoparticle suspensions. Colloids Surf. A Physicochem. Eng. Asp. 567 (2019), 249–259, 10.1016/J.COLSURFA.2019.01.071.
Djemaoune, Y., Cases, E., Saurel, R., The effect of high-pressure microfluidization treatment on the foaming properties of pea albumin aggregates. J. Food Sci. 84 (2019), 2242–2249, 10.1111/1750-3841.14734.
Alves, A.C., Tavares, G.M., Mixing animal and plant proteins: is this a way to improve protein techno-functionalities. Food Hydrocoll., 97, 2019, 105171, 10.1016/J.FOODHYD.2019.06.016.
Schmitt, C., Gunes, D.Z., Gehin-Delval, C., Leser, M.E., Protein-stabilized foams. Foam Films and Foams, 1st edition, 2018, CRC Press, 261–278.
Adebiyi, A.P., Aluko, R.E., Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chem. 128 (2011), 902–908, 10.1016/j.foodchem.2011.03.116.
Lam, A.C.Y., Can Karaca, A., Tyler, R.T., Nickerson, M.T., Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 34 (2018), 126–147, 10.1080/87559129.2016.1242135.
Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., Chen, Y., Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res. Int. 109 (2018), 260–267, 10.1016/j.foodres.2018.04.044.
Chao, D., Jung, S., Aluko, R.E., Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Sci. Emerg. Technol. 45 (2018), 179–185, 10.1016/j.ifset.2017.10.014.
Moll, P., Salminen, H., Griesshaber, E., Schmitt, C., Weiss, J., Homogenization improves foaming properties of insoluble pea proteins. J. Food Sci. 87 (2022), 4622–4635, 10.1111/1750-3841.16320.
Luo, L., Wang, Z., Deng, Y., Wei, Z., Zhang, Y., Tang, X., Liu, G., Zhou, P., Zhao, Z., Zhang, M., Li, P., High-pressure homogenization: a potential technique for transforming insoluble pea protein isolates into soluble aggregates. Food Chem., 397, 2022, 133684, 10.1016/j.foodchem.2022.133684.
Chao, D., Aluko, R.E., Modification of the structural, emulsifying, and foaming properties of an isolated pea protein by thermal pretreatment. CyTA J. Food 16 (2018), 357–366, 10.1080/19476337.2017.1406536.
Yang, J., Mocking-Bode, H.C.M., van den Hoek, I.A.F., Theunissen, M., Voudouris, P., Meinders, M.B.J., Sagis, L.M.C., The impact of heating and freeze or spray drying on the interface and foam stabilising properties of pea protein extracts: explained by aggregation and protein composition. Food Hydrocoll., 133, 2022, 107913, 10.1016/j.foodhyd.2022.107913.
Kornet, R., Yang, J., Venema, P., van der Linden, E., Sagis, L.M.C., Optimizing pea protein fractionation to yield protein fractions with a high foaming and emulsifying capacity. Food Hydrocoll., 126, 2022, 107456, 10.1016/j.foodhyd.2021.107456.
Chang, L., Lan, Y., Bandillo, N., Ohm, J.-B., Chen, B., Rao, J., Plant proteins from green pea and chickpea: extraction, fractionation, structural characterization and functional properties. Food Hydrocoll., 123, 2022, 107165, 10.1016/j.foodhyd.2021.107165.
Hayati Zeidanloo, M., Ahmadzadeh Ghavidel, R., Ghiafeh Davoodi, M., Arianfar, A., Functional properties of Grass pea protein concentrates prepared using various precipitation methods. J. Food Sci. Technol. 56 (2019), 4799–4808, 10.1007/s13197-019-03930-3.
Stone, A.K., Karalash, A., Tyler, R.T., Warkentin, T.D., Nickerson, M.T., Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res. Int. 76 (2015), 31–38, 10.1016/j.foodres.2014.11.017.
Feyzi, S., Milani, E., Golimovahhed, Q.A., Grass pea (Lathyrus sativus L.) protein isolate: the effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocoll. 74 (2018), 187–196, 10.1016/j.foodhyd.2017.07.031.
Cui, L., Bandillo, N., Wang, Y., Ohm, J.-B., Chen, B., Rao, J., Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocoll., 108, 2020, 106008, 10.1016/j.foodhyd.2020.106008.
Sun, H., Sun, J., Dou, N., Li, J., Hussain, M.A., Ma, J., Hou, J., Characterization and comparison of structure, thermal and functional characteristics of various commercial pea proteins. Food Biosci., 53, 2023, 102740, 10.1016/j.fbio.2023.102740.
Nahimana, P., Kerezsi, A.D., Karamoko, G., Abdelmoumen, H., Blecker, C., Karoui, R., Impact of defatting methods on the physicochemical and functional properties of white lupin protein isolates. Eur. Food Res. Technol. 249 (2023), 2387–2400, 10.1007/s00217-023-04305-x.
Yuksel, Z., Avcı, E., Uymaz, B., Erdem, Y.K., General composition and protein surface hydrophobicity of goat, sheep and cow milk in the region of Mount Ida. Small Rumin. Res. 106 (2012), 137–144, 10.1016/j.smallrumres.2012.03.022.
Beveridge, T., Toma, S.J., Nakai, S., determination of SH- AND SS- groups in some food proteins using ELLMAN's reagent. J. Food Sci. 39 (1974), 49–51, 10.1111/j.1365-2621.1974.tb00984.x.
Wang, C., Wang, J., Zhu, D., Hu, S., Kang, Z., Ma, H., Effect of dynamic ultra-high pressure homogenization on the structure and functional properties of whey protein. J. Food Sci. Technol. 57 (2020), 1301–1309, 10.1007/S13197-019-04164-Z.
Loglio, G., Pandolfini, P., Miller, R., Makievski, A.V., Ravera, F., Liggieri, L., Drop and bubble shape analysis as a tool for dilational rheological studies of interfacial layers. Novel Methods to Study Interfacial Layers, 11th ed., 2001, Elsevier, 439–483, 10.1016/S1383-7303(01)80038-7.
Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976), 248–254, 10.1006/abio.1976.9999.
Amagliani, L., O'Regan, J., Schmitt, C., Kelly, A.L., O'Mahony, J.A., Characterisation of the physicochemical properties of intact and hydrolysed rice protein ingredients. J. Cereal Sci. 88 (2019), 16–23, 10.1016/j.jcs.2019.04.002.
Shrestha, S., van't Hag, L., Haritos, V., Dhital, S., Comparative study on molecular and higher-order structures of legume seed protein isolates: lentil, mungbean and yellow pea. Food Chem., 411, 2023, 135464, 10.1016/J.FOODCHEM.2023.135464.
Beck, S.M., Knoerzer, K., Sellahewa, J., Emin, M.A., Arcot, J., Effect of different heat-treatment times and applied shear on secondary structure, molecular weight distribution, solubility and rheological properties of pea protein isolate as investigated by capillary rheometry. J. Food Eng. 208 (2017), 66–76, 10.1016/j.jfoodeng.2017.03.016.
Fang, L., Xiang, H., Sun-Waterhouse, D., Cui, C., Lin, J., Enhancing the usability of pea protein isolate in food applications through modifying its structural and sensory properties via deamidation by glutaminase. J. Agric. Food Chem. 68 (2020), 1691–1697, 10.1021/ACS.JAFC.9B06046/SUPPL_FILE/JF9B06046_SI_001.PDF.
Diana Kerezsi, A., Jacquet, N., Lelia Pop, O., Othmeni, I., Figula, A., Francis, F., Karamoko, G., Karoui, R., Blecker, C., Impact of pilot-scale microfluidization on soybean protein structure in powder and solution. Food Research International, 188, 2024, 114466, 10.1016/j.foodres.2024.114466.
Bogahawaththa, D., Bao Chau, N.H., Trivedi, J., Dissanayake, M., Vasiljevic, T., Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT 102 (2019), 246–253, 10.1016/J.LWT.2018.12.034.
Zhang, T., Jiang, B., Mu, W., Wang, Z., Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl. Food Hydrocoll 23 (2009), 146–152, 10.1016/j.foodhyd.2007.12.005.
Jiang, S., Ding, J., Andrade, J., Rababah, T.M., Almajwal, A., Abulmeaty, M.M., Feng, H., Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrason Sonochem 38 (2017), 835–842, 10.1016/J.ULTSONCH.2017.03.046.
Zhang, X., Lei, Y., Luo, X., Wang, Y., Li, Y., Li, B., Liu, S., Impact of pH on the interaction between soybean protein isolate and oxidized bacterial cellulose at oil-water interface: Dilatational rheological and emulsifying properties. Food Hydrocoll, 115, 2021, 106609, 10.1016/j.foodhyd.2021.106609.
Jiang, J., Xiong, Y.L., Chen, J., Role of β-Conglycinin and Glycinin Subunits in the pH-Shifting-Induced Structural and Physicochemical Changes of Soy Protein Isolate. J Food Sci, 76, 2011, 10.1111/j.1750-3841.2010.02035.x.
Cheng, J., Cui, L., Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film. Ultrason Sonochem, 80, 2021, 105809, 10.1016/J.ULTSONCH.2021.105809.
Hu, H., Wu, J., Li-Chan, E.C.Y., Zhu, L., Zhang, F., Xu, X., Fan, G., Wang, L., Huang, X., Pan, S., Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 30 (2013), 647–655, 10.1016/J.FOODHYD.2012.08.001.
O'Kane, F.E., Vereijken, J.M., Gruppen, H., Van Boekel, M.A.J.S., Gelation behavior of protein isolates extracted from 5 cultivars of Pisum sativum L. J. Food Sci. 70 (2005), C132–C137, 10.1111/j.1365-2621.2005.tb07073.x.
Gong, K., Chen, L., Xia, H., Dai, H., Li, X., Sun, L., Kong, W., Liu, K., Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. Int. J. Biol. Macromol. 130 (2019), 915–921, 10.1016/J.IJBIOMAC.2019.02.123.
Andlinger, D.J., Röscheisen, P., Hengst, C., Kulozik, U., Influence of pH, temperature and protease inhibitors on kinetics and mechanism of thermally induced aggregation of potato proteins. Foods, 10, 2021, 796, 10.3390/foods10040796.
Dombrowski, J., Gschwendtner, M., Kulozik, U., Evaluation of structural characteristics determining surface and foaming properties of β-lactoglobulin aggregates. Colloids Surf. A Physicochem. Eng. Asp. 516 (2017), 286–295, 10.1016/j.colsurfa.2016.12.045.
Delahaije, R.J.B.M., Wierenga, P.A., van Nieuwenhuijzen, N.H., Giuseppin, M.L.F., Gruppen, H., Protein concentration and protein-exposed hydrophobicity as dominant parameters determining the flocculation of protein-stabilized oil-in-water emulsions. Langmuir 29 (2013), 11567–11574, 10.1021/la401314a.
Yildiz, G., Andrade, J., Engeseth, N.E., Feng, H., Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication. J. Colloid Interface Sci. 505 (2017), 836–846, 10.1016/j.jcis.2017.06.088.
Lan, Y., Chen, B., Rao, J., Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocoll. 80 (2018), 245–253, 10.1016/J.FOODHYD.2018.02.021.
Moll, P., Salminen, H., Seitz, O., Schmitt, C., Weiss, J., Characterization of soluble and insoluble fractions obtained from a commercial pea protein isolate. J. Dispers. Sci. Technol., 2022, 1–12, 10.1080/01932691.2022.2093214.
Chang, C., Tu, S., Ghosh, S., Nickerson, M.T., Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Res. Int. 77 (2015), 360–367, 10.1016/J.FOODRES.2015.08.012.
Tang, Q., Roos, Y.H., Miao, S., Plant protein versus dairy proteins: a pH-dependency investigation on their structure and functional properties. Foods, 12, 2023, 368, 10.3390/foods12020368.
Shanthakumar, P., Klepacka, J., Bains, A., Chawla, P., Dhull, S.B., Najda, A., The current situation of pea protein and its application in the food industry. Molecules, 27, 2022, 5354, 10.3390/molecules27165354.
Jiang, J., Chen, J., Xiong, Y.L., Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. J. Agric. Food Chem. 57 (2009), 7576–7583, 10.1021/jf901585n.
Figueroa-González, J.J., Lobato-Calleros, C., Vernon-Carter, E.J., Aguirre-Mandujano, E., Alvarez-Ramirez, J., Martínez-Velasco, A., Modifying the structure, physicochemical properties, and foaming ability of amaranth protein by dual pH-shifting and ultrasound treatments. LWT, 153, 2022, 112561, 10.1016/j.lwt.2021.112561.
Amagliani, L., O'Regan, J., Kelly, A.L., O'Mahony, J.A., The composition, extraction, functionality and applications of rice proteins: a review. Trends Food Sci. Technol. 64 (2017), 1–12, 10.1016/j.tifs.2017.01.008.
Langevin, D., Aqueous foams: a field of investigation at the frontier between chemistry and physics. ChemPhysChem 9 (2008), 510–522, 10.1002/cphc.200700675.
Delahaije, R.J.B.M., Wierenga, P.A., hydrophobicity enhances the formation of protein-stabilized foams. Molecules, 27, 2022, 2358, 10.3390/molecules27072358.
Okumura, K., Miyake, Y., Taguchi, H., Shimabayashi, Y., Enhanced stability of protein foam due to disulfide bond formation just after foaming. Agric. Biol. Chem. 53 (1989), 2029–2030, 10.1080/00021369.1989.10869583.
Escuyer, V., Boquet, P., Perrin, D., Montecucco, C., Mock, M., A pH-induced increase in hydrophobicity as a possible step in the penetration of colicin E3 through bacterial membranes. J. Biol. Chem. 261 (1986), 10891–10898, 10.1016/S0021-9258(18)67471-X.
Alizadeh-Pasdar, N., Li-Chan, E.C.Y., Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agric. Food Chem. 48 (2000), 328–334, 10.1021/jf990393p.
Qiao, X., Miller, R., Schneck, E., Sun, K., Influence of pH on the surface and foaming properties of aqueous silk fibroin solutions. Soft Matter 16 (2020), 3695–3704, 10.1039/C9SM02372K.
Aider, M., Djenane, D., Ounis, W.B., Amino acid composition, foaming, emulsifying properties and surface hydrophobicity of mustard protein isolate as affected by pH and NaCl. Int. J. Food Sci. Technol. 47 (2012), 1028–1036, 10.1111/j.1365-2621.2012.02937.x.
Walstra, P., Principles of Foam Formation and Stability. 1989, 1–15, 10.1007/978-1-4471-3807-5_1.
Van der Plancken, I., Van Loey, A., Hendrickx, M.E., Foaming properties of egg white proteins affected by heat or high pressure treatment. J. Food Eng. 78 (2007), 1410–1426, 10.1016/j.jfoodeng.2006.01.013.
Almubarak, M., Almubarak, T., Ng, J.H., Hernandez, J., Nasr-El-Din, H., Recent advances in waterless fracturing fluids: a review. Day 1 Mon, November 09, 2020, SPE, 2020, 10.2118/202981-MS.
Barać, M., Čabrilo, S., Pešić, M., Stanojević, S., Pavlićević, M., Maćej, O., Ristić, N., Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. Int. J. Mol. Sci. 12 (2011), 8372–8387, 10.3390/ijms12128372.
Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., Ristic, N., Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int. J. Mol. Sci. 11 (2010), 4973–4990, 10.3390/ijms11124973.
Theses Dissertations, M., Bao, J., ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst Foaming Properties of Dilute Pea Protein Solutions Foaming Properties of Dilute Pea Protein Solutions. 2022, 10.7275/28616157.
Alkhalidi, A.A.T., Amano, R.S., Factor affecting bubble creation and bubble size. Volume 1: Advances in Aerospace Technology; Energy Water Nexus; Globalization of Engineering; Posters, ASMEDC, 2011, 397–401, 10.1115/IMECE2011-62117.
Huang, J., Yao, Z., Influencing factors and size prediction of bubbles formed by flow focusing in a cross-channel. Chem. Eng. Sci., 248, 2022, 117228, 10.1016/j.ces.2021.117228.
Mandalahalli, M.M., Lif, J., Mudde, R.F., Portela, L.M., Electrolyte and temperature effects in a rising bubble. Chem. Eng. Sci., 270, 2023, 118276, 10.1016/j.ces.2022.118276.
Dachmann, E., Nobis, V., Kulozik, U., Dombrowski, J., Surface and foaming properties of potato proteins: impact of protein concentration, pH value and ionic strength. Food Hydrocoll., 107, 2020, 105981, 10.1016/j.foodhyd.2020.105981.
Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., Li, S., Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chem. 283 (2019), 539–548, 10.1016/j.foodchem.2019.01.083.
Zhang, S., Cheng, J., Xie, Q., Jiang, S., Sun, Y., Foaming and physicochemical properties of commercial protein ingredients used for infant formula formulation. Foods, 11, 2022, 3710, 10.3390/foods11223710.