Exploring the presence, genomic traits, and pathogenic potential of extended-spectrum β-lactamase Escherichia coli in freshwater, wastewater, and hospital effluents.
[en] AIMS: The purpose of this work was to study extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) in freshwaters, hospital effluents, and wastewaters during two sampling campaigns in 2021.
METHODS AND RESULTS: Water sampling was performed at 24 stations in the Ourthe watershed in Belgium. A total of 644 ESBL (n = 642) and AmpC (n = 2) E. coli strains were isolated. Disk-diffusion assays were performed following the EUCAST's recommendations. All strains were tested for the presence of blaCTX-M-1, blaCTX-M-2, and blaCTX-M-9 gene groups by PCR. Genes belonging to blaCTX-M-1 and blaCTX-M-9 groups were detected, respectively, in 73.6% and 14.9% of the strains. No blaCTX-M-2 group's gene was found. A subset of strains (n = 40) was selected for whole genome sequencing. Escherichia coli serotype O18: H7 ST 1463 was predominant (n = 14) in the sequenced strains and showed pathogenicity in the Galleria mellonella larvae model. β-lactamase genes identified were blaCTX-M (n = 21), with blaCTX-M-15 mostly represented (n = 15), as well as blaTEM (n = 11), blaOXA (n = 7), blaSHV (n = 9), and carbapenemase (CP) genes were observed in several strains-blaKPC-3 (n = 19), blaNDM-1 (n = 1), blaVIM-1 (n = 2), and blaOXA-244 (n = 2)-even from freshwaters.
CONCLUSIONS: ESBL-EC are widely distributed in the aquatic environment in Belgium and contain a variety of ESBL and CP genes.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Crettels, Leslie ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) ; Department of Microbiology, Scientific Institute of Public Service (ISSeP), 4000 Liège, Belgium
Burlion, Nadine; Department of Microbiology, Scientific Institute of Public Service (ISSeP), 4000 Liège, Belgium
Habets, Audrey ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Taminiau, Bernard ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Delrée, Elisa; Department of Microbiology, Scientific Institute of Public Service (ISSeP), 4000 Liège, Belgium
Mouchette, Anne-Françoise; Department of Microbiology, Scientific Institute of Public Service (ISSeP), 4000 Liège, Belgium
Thiry, Damien ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Bactériologie vétérinaire et maladies bactériennes animales
Language :
English
Title :
Exploring the presence, genomic traits, and pathogenic potential of extended-spectrum β-lactamase Escherichia coli in freshwater, wastewater, and hospital effluents.
Anses. Antibiorésistance et environnement. État et causes possibles de la contamination des milieux en France par les antibiotiques, les bactéries résistantes aux antibiotiques et les supports génétiques de la résistance aux antibiotiques. Avis de l'Anses. Rapport d'expertise collective. 2020. https://www.anses.fr/fr/system/files/EAUX2016SA0252Ra.pdfConsulted on september 2023.
Antoine C, Laforêt F, Blasdel B et al. In vitro characterization and in vivo efficacy assessment in Galleria mellonella larvae of newly isolated bacteriophages against Escherichia coli K1. Viruses 2021;13:2005.
Baron S, Le Devendec L, Lucas P et al. Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Vet Microbiol 2020;243:108619. https://doi.org/10.1016/j.vetmic.2020.108619
Berendonk TU, Manaia CM, Merlin C et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Micro 2015;13:310-7. https://doi.org/10.1038/nrmicro3439
Berthe T, Ratajczak M, Clermont O et al. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl Environ Microb 2013;79:4684-93. https://doi.org/10.1128/AEM.00698-13
Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2017;72:2145-55. https://doi.org/10.1093/jac/dkx146
Blaak H, de Kruijf P, Hamidjaja RA et al. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. Vet Microbiol 2014;171:448-59. https://doi.org/10.1016/j.vetmic.2014.03.007
Blaak H, Lynch G, Italiaander R et al. Multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in Dutch surface water and wastewater. PLoS One 2015;10:e0127752. https://doi.org/10.1371/journal.pone.0127752
Bonomo RA, Burd EM, Conly J et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis 2018;66:1290-7. https://doi.org/10.1093/cid/cix893
Burgess SA, Moinet M, Brightwell G et al. Whole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites. Microb Genom 2022;8:000893. https://doi.org/10.1099/mgen.0.000893
Cahill N, O'Connor L, Mahon B et al. Hospital effluent: a reservoir for carbapenemase-producing enterobacterales? Sci Total Environ 2019;672:618-24. https://doi.org/10.1016/j.scitotenv.2019.03.428
Chen P-A, Hung C-H, Huang P-C et al. Characteristics of CTX-M extended-spectrum β-lactamase-producing Escherichia coli strains isolated from multiple rivers in southern Taiwan. Appl Environ Microb 2016;82:1889-97. https://doi.org/10.1128/AEM.03222-15
Cho S, Jackson CR, Frye JG. Freshwater environment as a reservoir of extended-spectrum β-lactamase-producing Enterobacteriaceae. J Appl Microbiol 2023;134:lxad034. https://doi.org/10.1093/jambio/lxad034
Clermont O, Christenson JK, Denamur E et al. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013;5:58-65. https://doi.org/10.1111/1758-2229.12019
Crettels L, Burlion N, Breyer R et al. Antimicrobial resistance of Escherichia coli isolated from freshwaters and hospital effluents in Belgium. Lett Appl Microbiol 2022;74:411-8. https://doi.org/10.1 111/lam.13625
Crettels L, Champon L, Burlion N et al. Antimicrobial resistant Escherichia coli prevalence in freshwaters in Belgium and human exposure risk assessment. Heliyon 2023;9:e16538. https://doi.org/10.1016/j.heliyon.2023.e16538
Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011;55:5370-3. https://doi.org/10.1128/AAC.05202-11
Dashti AA, Jadaon MM, Abdulsamad AM et al. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. J Kuwait Med Assoc 2009;41:117-22.
Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol 2016;65:261-71. https://doi.org/10.1099/jmm.0.000229
Fakih I, Thiry D, Duprez J-N et al. Identification of Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli in diarrhoeic calves and comparative genomics of O5 bovine and human STEC. Vet Microbiol 2017;202:16-22. https://doi.org/10.1016/j.vetmic.2016.02.017
Ghaderpour A, Ho WS, Chew L-L et al. Diverse and abundant multidrug resistant E. coli in Matang mangrove estuaries, Malaysia. Front Microbiol 2015;6:977.
Guérin V, Farchi A, Cawez F et al. A three-year evolution and comparison of the blaCTX-M genes in pathogenic and non-pathogenic Escherichia coli isolated from young diarrheic and septicaemic calves in Belgium. Res Vet Sci 2022;152:647-50. https://doi.org/10.1016/j.rvsc.2022.09.037
Habets A, Antoine C, Wagemans J et al. Impact of Shiga-toxin encoding gene transduction from O80:H2 Shiga toxigenic Escherichia coli (STEC) on non-STEC strains. Sci Rep 2022;12:21587. https://doi.org/10.1038/s41598-022-26198-8
Herrig I, Fleischmann S, Regnery J et al. Prevalence and seasonal dynamics of blaCTX-M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany. PLoS One 2020;15:e0232289. https://doi.org/10.1371/journal.pone.0232289 Hoelle J, Johnson JR, Johnston BD et al. Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. J Water Health 2019;17:219-26. https://doi.org/10.2166/wh.2019.165
Hooban B, Fitzhenry K, Cahill N et al. A point prevalence survey of antibiotic resistance in the Irish environment, 2018-2019. Environ Int 2021;152:106466. https://doi.org/10.1016/j.envint.2021.〈?PMU?〉106466
Johnson A, Ginn O, Bivins A et al. Extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli presence in urban aquatic environments in Kanpur, India. J Water Health 2020;18:849-54. https://doi.org/10.2166/wh.2020.065
Jørgensen SB, Søraas AV, Arnesen LS et al. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS One 2017;12:e0186576. https://doi.org/10.1371/journal.pone.0186576
Kimera ZI, Mgaya FX, Mshana SE et al. Occurrence of extended spectrum beta lactamase (ESBL) producers, quinolone and carbapenem resistant Enterobacteriaceae isolated from environmental samples along Msimbazi River Basin ecosystem in Tanzania. Int J Environ Res Public Health 2021;18:8264. https://doi.org/10.3390/ijerph18 168264
Kudinha T, Johnson JR, Andrew SD et al. Escherichia coli sequence type 131 as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J Clin Microbiol 2013;51:3270-6. https://doi.org/10.1128/JCM.01315-13
Kwak Y-K, Colque P, Byfors S et al. Surveillance of antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: does it reflect the resistance trends in the society? Int J Antimicrob Agents 2015;45:25-32. https://doi.org/10.1016/j.ijantimicag.2014.09.016
Lenart-Boroń A. Antimicrobial resistance and prevalence of extended-spectrum beta-lactamase genes in Escherichia coli from major rivers in Podhale, southern Poland. Int J Environ Sci Technol 2017;14:241-50. https://doi.org/10.1007/s13762-016-1155-4
Lenart-Boroń AM, Kulik K, Jelonkiewicz E. Antimicrobial resistance and ESBL genes in E. coli isolated in proximity to a sewage treatment plant. J Environ Sci Health A Tox Hazard Subst Environ Eng 2020;55:1571-80. https://doi.org/10.1080/10934529.2020.18 26774
Livermore DM, Canton R, Gniadkowski M et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2006;59:165-74. https://doi.org/10.1093/jac/dkl483
Magiorakos A-P, Srinivasan A, Carey RB et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Mahérault A-C, Kemble H, Magnan M et al. Advantage of the F2:A1:BIncF pandemic plasmid over IncC plasmids in in vitro acquisition and evolution of blaCTX-M gene-bearing plasmids in Escherichia coli. Antimicrob Agents Chemother 2019;63:e01130-19. https://doi.org/10.1128/AAC.01130-19
Mani Y, Mansour W, Mammeri H et al. KPC-3-producing ST167 Escherichia coli from mussels bought at a retail market in Tunisia. J Antimicrob Chemother 2017;72:2403-4. https://doi.org/10.1093/jac/dkx124
Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014;20:O255-66. https://doi.org/10.1111/1469-0691.1237 3
Merida-Vieyra J, De Colsa A, Calderon Castañeda Y et al. First report of group CTX-M-9 extended spectrum beta-lactamases in Escherichia coli isolates from pediatric patients in Mexico. PLoS One 2016;11:e0168608. https://doi.org/10.1371/journal.pone.0168608
Mouftah SF, Pál T, Darwish D et al. Epidemic IncX3 plasmids spreading carbapenemase genes in the United Arab Emirates and worldwide. Infect Drug Resist 2019;12:1729-42. https://doi.org/10.2147/IDR. S210554
Moulin-Schouleur M, Répérant M, Laurent S et al. Extraintestinal pathogenic Escherichia coli strains of Avian and Human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 2007;45:3366-76. https://doi.org/10.1128/JCM. 00037-07
Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 2011;45:681-93. https://doi.org/10.1016/j.watres.2010.08.033
Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class a beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci 1994;91:7693-7. https://doi.org/10.1073/pnas.91.16.7693
Naas T, Oueslati S, Bonnin RA et al. Beta-lactamase database (BLDB)-structure and function. J Enzyme Inhib Med Chem 2017;32:917-9. https://doi.org/10.1080/14756366.2017.1344235
Ogutu JO, Zhang Q, Huang Y et al. Development of a multiplex PCR system and its application in detection of blaSHV, blaTEM, blaCTX-M-1, blaCTX-M-9 and blaOXA-1 group genes in clinical Klebsiella pneumoniae and Escherichia coli strains. J Antibiot (Tokyo) 2015;68:725-33. https://doi.org/10.1038/ja.2015.68
Peirano G, Bradford P, Kazmierczak KM et al. Global Incidence of carbapenemase-producing Escherichia coli ST131. Emerg Infect Dis 2014;20:1928-31.
Peirano G, Pitout JDD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 2010;35:316-21. https://doi.org/10.1016/j.ijantimicag.2009.11.003
Pereira A, Santos A, Tacão M et al. Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal). Sci Total Environ 2013;461-462:65-71. https://doi.org/10.1016/j. scitotenv.2013.04.067
Picard B, Garcia JS, Gouriou S et al. the link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999;67:546-53. https://doi.org/10.1128/IAI.67.2.546-553. 1999
Pitout JDD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-nl-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 2004;42:7. https://doi.org/10.1128/JCM.42.12.5715-5721.2004
Poirel L, Lartigue M-F, Decousser J-W et al. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob Agents Chemother 2005;49:447-50. https://doi.org/10.1128/AAC.49.1.447-450.2005
Pruden A, Pei R, Storteboom H et al. Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol 2006;40:7445-50. https://doi.org/10.1021/es060 413l
Reinthaler FF, Feierl G, Galler H et al. ESBL-producing E. coli in Austrian sewage sludge. Water Res 2010;44:1981-5. https://doi.org/10.1016/j.watres.2009.11.052
Reynolds LJ, Sala-Comorera L, Martin NA et al.. Correlation between antimicrobial resistance and faecal contamination in small urban streams and bathing waters. Sci Total Environ 2020;739:140242. https://doi.org/10.1016/j.scitotenv.2020.140242
Robin F, Beyrouthy R, Bonacorsi S et al. Inventory of extended-spectrum-β-lactamase-producing Enterobacteriaceae in France as assessed by a multicenter study. Antimicrob Agents Chemother 2017;61:e01911-16. https://doi.org/10.1128/AAC.01911-16
Rodriguez-Villalobos H, Bogaerts P, Berhin C et al. Trends in production of extended-spectrum β-lactamases among Enterobacteriaceae of clinical interest: results of a nationwide survey in Belgian hospitals. J Antimicrob Chemother 2011;66:37-47. https://doi.org/10.1093/jac/dkq388
Rossoni RD, Ribeiro F de C, dos Santos HFS et al. Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 2019;101:13-22. https://doi.org/10.1016/j.archoralbio.2019.03.002
Sanders CC, Sanders WE. Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob Agents Chemother 1979;15:792-7. https://doi.org/10.1128/AAC.15.6.792
Schijven JF, Blaak H, Schets FM et al. Fate of extended-spectrum βlactamase-producing Escherichia coli from faecal sources in surface water and probability of Human exposure through swimming. Environ Sci Technol 2015;49:11825-33. https://doi.org/10.1021/acs.es t.5b01888
Servais P, Passerat J. Antimicrobial resistance of fecal bacteria in waters of the Seine river watershed (France). Sci Total Environ 2009;408:365-72. https://doi.org/10.1016/j.scitotenv.2009.09.042
Shamsrizi P, Gladstone BP, Carrara E et al. Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria-producing extended-spectrum beta-lactamases: a systematic review and meta-analysis. BMJ Open 2020;10:e030266. https://doi.org/10.1136/bmjopen-20 19-030266
Tamura K, Stecher G, Peterson D et al. MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
White A, Hughes JM. Critical importance of a one health approach to antimicrobial resistance. EcoHealth 2019;16:404-9. https://doi.org/10.1007/s10393-019-01415-5
WHO. Ten threats to global health in 2019. Geneva, Switzerland, 2019 [WWW Document]. 2019a. https://www.who.int/vietnam/news/feature-stories/detail/ten-threats-to-global-health-in-2019 Consulted on september 2023.
WHO. New report calls for urgent action to avert antimicrobial resistance crisis [WWW Document]. 2019b. https://www.who.int/news/item/29-04-2019-new-report-calls-for-ur gent-action-to-avert-antimicrobial-resistance-crisis Consulted on september 2023.
WHO. WHO Integrated Global Surveillance on ESBL-producing E. coli Using a “One Health” Approach: Implementation and Opportunities. Geneva: World Health Organization. 2021.ISBN 978-92-4-002140-2.
Zhao X, Miao Y, Adam FEA et al. ESBLs-producing Escherichia coli from sheep-origin: genome-wide virulence genes identification and in vivo virulence assessment in mice and Galleria mellonella. Trans-bound Emerg Dis 2022;69:3606-17. https://doi.org/10.1111/tbed.1 4729
Zhen X, Lundborg CS, Sun X et al. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 2019;8:137.
Zhou Z, Alikhan N-F, Mohamed K et al. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020;30:138-52. https://doi.org/10.1101/gr.251678.119