Food preservation; ice crystallization control technology; quality attributes; supercooling stability; Control methods; Control technologies; Crystallization control; Factor methods; Ice crystallization; Supercooled state; Supercoolings; Food Science; Industrial and Manufacturing Engineering; General Medicine
Abstract :
[en] Supercooling can preserve food in its original fresh state below its ice point temperature without freezing. However, the supercooled state is unstable in thermodynamics, state breakdown can occur at any moment, resulting in irregular and larger ice crystals formation, leading to food tissue damage, and loss of quality and nutrients. While the effectiveness of supercooling preservation has been verified in the lab and pilot scale tests, the stability of the supercooled state of food remains an open question, posing a limitation for larger industrial-scale application of supercooling preservation. Based on this background, this review presents the instability mechanisms of supercooling preservation and summarizes the factors such as food properties (e.g., material size, food components, specific surface area, and surface roughness) and preservation circumstances (e.g., cooling rate, temperature variation, and mechanical disturbance) that influence the stability of the supercooled state of food. The review also discusses novel techniques for enhancing the supercooling capacity and their limitations (e.g., precise temperature control and magnetic field). Further studies are necessary to comprehensively evaluate the effects of influence factors and supercooling technologies on supercooling, realizing the true sense of 'no-crystal' food products under subzero temperature preservation conditions in commercial applications. [en] Supercooling can maximize the potential of low temperature in food preservation.Supercooled state of food is unstable, with many factors affecting its stability.The quality of foodstuffs with supercooled failure is unacceptable.Instability of supercooling limits its large application in food industry.Novel technologies are developed to enhance the state stability of food supercooling.
Disciplines :
Food science
Author, co-author :
Lin, Hengxun; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China ; Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Xu, Ying; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
Guan, Wenqiang; Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin, China
Zhao, Songsong; Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
Li, Xia; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Chunhui; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
Blecker, Christophe ; Université de Liège - ULiège > TERRA Research Centre > Technologie Alimentaire (TA)
Liu, Jiqian; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
The importance of supercooled stability for food during supercooling preservation: a review of mechanisms, influencing factors, and control methods.
Adachi, T., D. Daudah, and G. Tanaka. 2014. Effects of supercooling degree and specimen size on supercooling duration of erythritol. ISIJ International 54 (12): 2790–5. doi: 10.2355/isijinternational.54.2790.
Auleda, M. J., M. Raventós, J. Sánchez, and E. Hernández. 2011. Estimation of the freezing point of concentrated fruit juices for application in freeze concentration. Journal of Food Engineering 105 (2): 289–94. doi: 10.1016/j.jfoodeng.2011.02.035.
Barma, M. C., Z. Peng, B. Moghtader, and E. Doroodchi. 2021. Effects of drop size and salt concentration on the freezing temperature of supercooled drops of salt solutions. Separation and Purification Technology 274: 118925. doi: 10.1016/j.seppur.2021.118925.
Bi, Y., B. Cao, and T. Li. 2017. Enhanced heterogeneous ice nucleation by special surface geometry. Nature Communications 8: 15372. doi: 10.1038/ncomms15372.
Bilbao-Sainz, C., A. J. G. Sinrod, L. Dao, G. Takeoka, T. Williams, D. Wood, B. Chiou, D. F. Bridges, V. C. H. Wu, C. Lyu, et al. 2021. Preservation of grape tomato by isochoric freezing. Food Research International (Ottawa, ON) 143: 110228. doi: 10.1016/j.foodres.2021.110228.
CBRE. 2022. Cold storage investment and location strategy. https://zhuanlan.zhihu.com/p/505536291.
Cheng, L., D. Sun, Z. Zhu, and Z. Zhang. 2017. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Critical Reviews in Food Science and Nutrition 57 (4): 769–81. doi: 10.1080/10408398.2015.1004569.
Climats. 2023. Temperature environmental test chamber EXCAL2. Accessed February 23, 2023. https://www.climats-tec.com/en/products/our-product-lines/temperature-environmental-test-chamber.html
Dalvi-Isfahan, M., P. K. Jha, J. Tavakoli, A. Daraei-Garmakhany, E. Xanthakis, and A. Le-Bail. 2019. Review on identification, underlying mechanisms and evaluation of freezing damage. Journal of Food Engineering 255: 50–60. doi: 10.1016/j.jfoodeng.2019.03.011.
Deck, L., D. R. Ochsenbein, D. R and, and M. Mazzotti. 2022. Stochastic ice nucleation governs the freezing process of biopharmaceuticals in vials. International Journal of Pharmaceutics 625: 122051. doi: 10.1016/j.ijpharm.2022.122051.
Eberle, P., M. K. Tiwari, T. Maitra, and D. Poulikakos. 2014. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6 (9): 4874–81. doi: 10.1039/c3nr06644d.
Fan, X., Y. Xi, H. Zhao, B. Liu, J. Cao, and W. Jiang. 2018. Improving fresh apricot (Prunus armeniaca L.) quality and antioxidant capacity by storage at near freezing temperature. Scientia Horticulturae 231: 1–10. doi: 10.1016/j.scienta.2017.12.015.
FAO. 2019. Food and Agricultural Organization. The State of Food and Agriculture 2019: Mooving Forward on Food Loss and Waste Reduction. Accessed November 22, 2020. Google Scholar. http://www.fao.org/3/ca6030en/ca6030en.pdf.
Farouk, M. M., R. M. Kemp, S. Cartwright, and M. North. 2013. The initial freezing point temperature of beef rises with the rise in pH: A short communication. Meat Science 94 (1): 121–4. doi: 10.1016/j.meatsci.2012.12.018.
Faucheux, M., F. Muller, M. Havet, and A. Le-Bail. 2006. Influence of surface roughness on the supercooling degree: Case of selected water/ethanol solutions frozen on aluminium surfaces. International Journal of Refrigeration 29 (7): 1218–24. doi: 10.1016/j.ijrefrig.2006.01.002.
Fukuma, Y., A. Yamane, T. Itoh, Y. Tsukamasa, and M. Ando. 2012. Application of supercooling to long-term storage of fish meat. Fisheries Science 78 (2): 451–61. doi: 10.10007/s12562-011-0460-6.
González, N. P., A. R. Rivera, and N. O. Moraga. 2021. Conjugate turbulent natural heat convection and solid food freezing modelling: Effects of position and number of pieces of salmon on the cooling rate. Thermal Science and Engineering Progress 26: 101101. doi: 10.1016/j.tsep.2021.101101.
Guo, L., S. M. R. Azam, Y. Guo, D. Liu, and H. Ma. 2022. Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control 136: 108496. doi: 10.1016/j.foodcont.2021.108496.
Her, J. Y., T. Kang, R. Hoptowit, and S. Jun. 2019. Oscillating magnetic field (OMF)-based supercooling preservation of fresh-cut honeydew melon. Transactions of the ASABE 62 (3): 779–85. doi: 10.13031/trans.13286.
Hou, J., J. Gong, X. Wu, and Q. Huang. 2022. Numerical study on impacting-freezing process of the droplet on a lateral moving cold superhydrophobic surface. International Journal of Heat and Mass Transfer 183 (A): 122044. doi: 10.1016/j.ijheatmasstransfer.2021.122044.
James, C., I. Lejay, N. Tortosa, X. Aizpurua, and S. J. James. 2005. The effect of salt concentration on the freezing point of meat simulants. International Journal of Refrigeration 28 (6): 933–9. doi: 10.1016/j.ijrefrig.2005.01.011.
James, C., V. Seignemartin, and S. J. James. 2009. The freezing and supercooling of garlic (Allium sativum L.). International Journal of Refrigeration 32 (2): 253–60. doi: 10.1016/j.ijrefrig.2008.05.012.
Jeremiah, L. E., and L. L. Gibson. 2001. The influence of storage temperature and storage time on color stability, retail properties and case-life of retail-ready beef. Food Research International 34 (9): 815–26. doi: 10.1016/S0963-9969(01)00104-1.
JUN INNOVATIONS INC. 2023. Supercooling device. https://www.juninnovationsinc.com/what-we-do.
Jun, S., H. I. Honolulu, J. Mok, and S. H. Park. 2018. Method of supercooling perishable materials. US Patent No. 10,111,452. Washington, DC: U.S. Patent and Trademark Office.
Kang, T., D. Lee, Y. Ko, and S. Jun. 2022. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) on supercooling preservation of beef at different fat levels. International Journal of Refrigeration 136: 36–45. doi: 10.1016/j.ijrefrig.2022.01.004.
Kang, T., R. Her, R. Hoptowit, M. M. Wall, and S. Jun. 2019. Investigation of the effect of oscillating magnetic field on fresh-cut pineapple and agar as a model food during supercooling preservation. Transactions of the ASABE 62 (5): 1155–61. doi: 10.13031/trans.13285.
Kang, T., Y. You, and S. Jun. 2020. Supercooling preservation technology in food and biological samples: A review focused on electric and magnetic field applications. Food Science Biotechnology 32 (10): 1453–53. doi: 10.1007/s10068-020-00786-8.
Kang, T., Y. You, R. Hoptowit, M. M. Wall, and S. Jun. 2021. Effect of an oscillating magnetic field on the inhibition of ice nucleation and its application for supercooling preservation of fresh-cut mango slices. Journal of Food Engineering 300: 110541. doi: 10.1016/j.jfoodeng.2021.110541.
Kim, H., and G. Hong. 2022. Comparison of superchilling and supercooling on extending the fresh quality of beef loin. Foods 11 (18): 2729. doi: 10.3390/foods11182729.
Kim, J., D. S. Choi, Y. H. Kim, J. Y. Son, C. W. Park, S. H. Park, and Y. Hwang. 2021. Supercooling as a potentially improved storage option for commercial kimchi. Journal of Food Science 86 (3): 749–61. doi: 10.1111/1750-3841.15633.
Koide, S., T. Ito, R. Osuga, and T. Orikasa. 2022. Assessment of cumulative freezing frequency of supercooled fresh-cut onion: Effects of sample size, supercooling temperature, and supercooled storage time. Journal of Agriculture and Food Research 10: 100440. doi: 10.1016/j.jafr.2022.100440.
Lan, Y., Y. Shang, Y. Song, and Q. Dong. 2016. Changes in the quality of superchilled rabbit meat stored at different temperatures. Meat Science 117: 173–81. doi: 10.1016/j.meatsci.2016.02.017.
Le-Bail, A., C. Toublanc, D. Queveau, L. Guihard, and D. Crucean. 2022. Determination of the initial freezing temperature of foods. Proceedings of the 7th IIR International Conference on Sustainability and the Cold Chain Online. Proceedings: April 11–13 2022. doi: 10.18462/iir.iccc2022.1129.
Lee, H., D. H. Park, E. J. Kim, and M. Choi. 2023b. Freshness analysis of raw laver (Pyropia yenzoensis) conserved under supercooling conditions. Foods 12 (3): 510. doi: 10.3390/foods12030510.
Lee, J. H., E. K. Choi, J. Y. Chang, K. B. Song, and H. H. Chun. 2021. Effect of high hydrostatic pressure (HHP) and supercooling storage in leaf mustard (Brassica juncea L.) kimchi: Modelling of microbial activity and preservation of physicochemical properties. LWT 145: 111325. doi: 10.1016/j.lwt.2021.111325.
Lee, J. H., J. A. Kwon, M. Kim, Y. E. Lee, M. Ryu, and C. Jo. 2023a. Effect of supercooling on storage ability of different beef cuts in comparison to traditional storage methods. Meat Science 199: 109137. doi: 10.1016/j.meatsci.2023.109137.
Lee, S., K. Jo, H. G. Jeong, Y. Choi, H. Kyoung, and S. Jung. 2022. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Critical Reviews in Food Science and Nutrition: 1–18. doi: 10.1080/10408398.2022.2116557.
Leng, D., H. Zhang, C. Tian, H. Xu, and P. Li. 2022. The effect of magnetic field on the quality of channel catfish under two different freezing temperatures. International Journal of Refrigeration 140: 49–56. doi: 10.1016/j.ijrefrig.2022.05.008.
Li, Y., Y. Zhao, Z. Zhang, H. He, L. Shi, X. Zhu, and K. Cui. 2022. Near-freezing temperature storage improves shelf-life and suppresses chilling injury in postharvest apricot fruit (Prunus armeniaca L.) by regulating cell wall metabolism. Food Chemistry 387: 132921. doi: 10.1016/j.foodchem.2022.132921.
Liang, C., D. Zhang, X. Zheng, X. Wen, T. Yan, Z. Zhang, and C. Hou. 2021. Effects of different storage temperatures on the physicochemical Properties and bacterial community structure of fresh lamb meat. Food Science of Animal Resources 41 (3): 509–26. doi: 10.5851/kosfa.2021.e15. 34017958
Lin, H., S. Zhao, X. Han, W. Guan, B. Liu, A. Chen, Y. Sun, and J. Wang. 2022a. Effect of static magnetic field extended supercooling preservation on beef quality. Food Chemistry 370: 131264. doi: 10.1016/j.foodchem.2021.131264.
Lin, H., X. He, C. Liu, J. Meng, W. Guan, C. Hou, C. Zhang, and W. Wang. 2022b. Static magnetic field-assisted supercooling preservation enhances water-holding capacity of beef during subzero storage. Innovative Food Science & Emerging Technologies 80: 103106. doi: 10.1016/j.ifset.2022.103106.
Liu, D., C. Xu, C. Guo, and X. Zhang. 2020. Sub-zero temperature preservation of fruits and vegetables: A review. Journal of Food Engineering 275: 109881. doi: 10.1016/j.jfoodeng.2019.109881.
Liu, X., J. Min, X. Zhang, Z. Hu, and X. Wu. 2021. Supercooled water droplet impacting-freezing behaviors on cold superhydrophobic spheres. International Journal of Multiphase Flow 141: 103675. doi: 10.1016/j.ijmultiphaseflow.2021.103675.
Lu, X., Y. Zhang, B. Xu, L. Zhu, and X. Luo. 2020. Protein denaturation and structure changes of beef muscle during superchilled storage. Meat Science 168: 108180. doi: 10.1016/j.meatsci.2020.108180.
Ma, Y., W. Zhang, S. Cheng, Y. Liu, W. Yang, Y. Wang, M. Guo, and G. Chen. 2022. Postharvest storage at near-freezing temperature maintained the quality and antioxidant properties of Prunus domestica L. cv. Ximei fruit. Scientia Horticulturae 293 (30): 110720. doi: 10.1016/j.lwt.2022.114165.
Ma, Z., W. Xiong, and P. Cheng. 2021. 3D Lattice Boltzmann simulations for water droplet’s impact and transition from central-pointy icing pattern to central-concave icing pattern on supercooled surfaces. Part II: Rough surfaces. International Journal of Heat and Mass Transfer 172: 121153. doi: 10.1016/j.ijheatmasstransfer.2021.121153.
Martins, R. C., C. C. Castro, and V. V. Lopes. 2011. The influence of geometrical and operational factors on supercooling capacity in strawberries: A simulation study. Food and Bioprocess Technology 4 (3): 395–407. doi: 10.1007/s11947-009-0228-5.
Mok, J. H., J. Y. Her, T. Kang, R. Hoptowit, and S. Jun. 2017. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts. Journal of Food Engineering 196: 27–35. doi: 10.1016/j.jfoodeng.2016.10.002.
Ndraha, N., H. Hsiao, J. Vlajic, M. Yang, and H. V. Lin. 2018. Time-temperature abuse in the food cold chain: Review of issues, challenges, and recommendations. Food Control. 89: 12–21. doi: 10.1016/j.foodcont.2018.01.027.
Osuga, R., S. Koide, M. Sakurai, T. Orikasa, and M. Uemura. 2021. Quality and microbial evaluation of fresh-cut apples during 10 days of supercooled storage. Food Control 126: 108014. doi: 10.1016/j.foodcont.2021.108014.
Otero, L., A. C. Rodríguez, M. Pérez-Mateos, and P. D. Sanz. 2016. Effects of magnetic fields on freezing: Application to biological products. Comprehensive Reviews in Food Science and Food Safety 15 (3): 46–67. doi: 10.1111/1541-4337.12202.
Panayampadan, A. S., M. S. Alam, R. Aslam, S. K. Gupta, and G. K. Sidhu. 2022. Effects of alternating magnetic field on freezing of minimally processed guava. LWT 163: 113544. doi: 10.1016/j.lwt.2022.113544.
Park, D. H., E. J. Kim, and M.-J. Choi. 2023. Supercooling phenomena in protein based food matrix composed of various fat, salt, and water contents. Food Bioscience 51: 1022. doi: 74 10.1016/j.fbio.2022.102274.
Park, D. H., E. Kim, H. Kim, G.-P. Hong, and M.-J. Choi. 2022b. Conditions of the stepwise cooling algorithm for stable supercooling preservation and freshness of Pork Loin. Foods 11 (24): 4021. doi: 10.3390/foods11244021.
Park, D. H., S. Lee, J. Lee, E. J. Kim, Y. Jo, H. Kim, M. Choi, and G. Hong. 2021. Stepwise cooling mediated feasible supercooling preservation to extend freshness of mackerel fillets. LWT 152: 112389. doi: 10.1016/j.lwt.2021.112389.
Park, D. H., S. Lee, Y. M. Byeon, R. J. Kim, and M. Choi. 2022a. Effect of supercooling storage applied with stepwise algorithm for fishes (salmon and olive flounder) and its freshness during extended storage. Food Bioscience 49: 101950. doi: 10.1016/j.fbio.2022.101950.
Prickett, R. C., L. A. Marquez-Curtis, J. A. W. Elliott, and L. E. McGann. 2015. Effect of supercooling and cell volume on intracellular ice formation. Cryobiology 70 (2): 156–63. doi: 10.1016/j.cryobiol.2015.02.002.
Qian, S., X. Li, H. Wang, Z. Sun, C. Zhang, W. Guan, and C. Blecker. 2018. Effect of sub-freezing storage (-6, -9 and -12 °C) on quality and shelf life of beef. International Journal of Food Science & Technology 53 (9): 2129–40. doi: 10.1111/ijfs.13800.
Qin, Y., B. Dong, and W. Li. 2020. Experimental study of the frosting characteristic of water on a cold surface in the magnetic field. Experimental Thermal and Fluid Science 114: 110044. doi: 10.1016/j.expthermflusci.2020.110044.
Ren, Q. S., Fang, K., Yang, X. T, and Han, J. W. 2022. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends in Food Science & Technology 119: 133–51. doi: 10.1016/j.tifs.2021.12.006.
Saito, S., S. Okawa, A. Tojiki, H. Une, and K. Tanogashira. 1992. Fundamental research on external factors affecting the freezing of supercooled water. International Journal of Heat and Mass Transfer 35 (10): 2527–36. doi: 10.1016/0017-9310(92)90094-9.
Sampaio, G. S. L., S. B. Pflanzer-Júnior, R. d. O. Roça, L. Casagrande, E. A. Bedeschi, C. R. Padovani, G. Z. Miguel, C. T. Santos, L. V. C. Girão, Z. B. Miranda, et al. 2015. Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses. Meat Science 100: 164–70. doi: 10.1016/j.meatsci.2014.10.018.
Schmidt, S. J. 2004. Water and solids mobility in foods. Advances in Food and Nutrition Research 48: 1–101. doi: 10.1016/S1043-4526(04)48001-2.
Schülli, T. U., R. Daudin, G. Renaud, A. Vaysset, O. Geaymond, and A. Pasturel. 2010. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature 464 (7292): 1174–7. doi: 10.1038/nature08986.
Shamseddine, I., F. Pennec, P. Biwole, and F. Fardoun. 2022. Supercooling of phase change materials: A review. Renewable and Sustainable Energy Reviews 158: 112172. doi: 10.1016/j.rser.2022.112172.
Stockel, P., I. M. Weidinger, H. Baumgartel, and T. Leisner. 2005. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. The Journal of Physical Chemistry. A 109 (11): 2540–6. doi: 10.1021/jp047665y.
Stonehouse, G. G., and J. A. Evans. 2015. The use of supercooling for fresh foods: A review. Journal of Food Engineering 148: 74–9. doi: 10.1016/j.jfoodeng.2014.08.007.
Sun, D. 2016. Handbook of frozen food processing and packaging, 9–14. Boca Raton, FL: CRC Press.
Tao, Y., Y. Guo, J. Li, K. Ye, Y. Zhang, X. Zeng, and H. Dou. 2023. Effect of temperature fluctuation during superchilling storage on the microstructure and quality of raw pork. Meat Science 198: 109096. doi: 10.1016/j.meatsci.2023.109096.
Wakamoto, S., N. Tanaka, K. Nakao, and H. Kimura. 1996. Study of the stability of supercooled water in an ice generator. ASHRAE Transactions 102 (2): 142–50. doi: 10.1016/j.est.2022.104755.
Wang, L., F. Wang, C. Lu, and H. Liu. 2022. Nucleation in supercooled water triggered by mechanical impact: Experimental and theoretical analyses. Journal of Energy Storage 52 (1): 104755. doi: 10.1016/j.est.2022.104755.
Wang, S. L., K. Tozaki, H. Hayashi, and H. Inaba. 2013. Magnetic effect on the phase transitions of n-docosane by means of a high resolution and super-sensitive DSC. Thermochimica Acta 571: 8–14. doi: 10.1016/j.tca.2013.08.001.
Wu, X., Z. Tang, S. Lyu, Q. Song, Y. Duan, and Z. Yang. 2022. Numerical investigation of effects of particle properties on nucleation process in a sulfuric acid-water vapor mixture: Homogeneous versus heterogeneous. Chemical Physics Letters 797 (16): 139582. doi: 10.1016/j.cplett.2022.139582.
Xiao, J., C. Gu, D. Zhu, H. Chao, Y. Liang, and S. Quan. 2022. Near-freezing temperature (NFT) storage alleviates chilling injury by enhancing antioxidant metabolism of postharvest guava (Psidium guajava L.). Scientia Horticulturae 305 (17): 111395. doi: 10.1016/j.scienta.2022.111395.
Yancheshme, A. A., M. Gelareh, and R. F. Aminababi. 2020. Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review. Advances in Colloid and Interface Science 279: 102155. doi: 10.1016/j.cis.2020.102155.
You, Y., J. Her, T. Shafel, T. Kang, and S. Jun. 2020. Supercooling preservation on quality of beef steak. Journal of Food Engineering 274: 109840. doi: 10.1016/j.jfoodeng.2019.109840.
You, Y., M. Li, T. Kang, Y. Ko, S. Kim, S. H. Lee, and S. Jun. 2021a. Application of Supercooling for the Enhanced Shelf Life of Asparagus (Asparagus officinalis L.). Foods 10 (10): 2361. doi: 10.3390/foods10102361.
You, Y., T. Kang, and S. Jun. 2021b. Control of ice nucleation for subzero food preservation. Food Engineering Reviews 13 (1): 15–35. doi: 10.1007/s12393-020-09211-6.
Young, S. W. V., and W. J. Sicklen. 1913. The mechanical stimulus to crystallization. Journal of the American Chemical Society 35 (9): 1067–78. doi: 10.1021/ja02198a002.
Yun, Y. C., K. Ramachandraiah, and G. Hong. 2021. Effect of precooling conditions on the ice nucleation temperature and freezing characteristics of semisolid matrices. Journal of Food Engineering 291: 110232. doi: 10.1016/j.jfoodeng.2020.110232.
Zahir, M. H., S. A. Mohamed, R. Saidur, and F. A. Al-Sulaiman. 2019. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Applied Energy 240 (15): 793–817. doi: 10.1016/j.apenergy.2019.02.045.
Zhang, G., C. Zhu, N. Walayat, A. Nawaz, Y. Ding, and J. Liu. 2022. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Critical Reviews in Food Science and Nutrition: 1–16. doi: 10.1080/10408398.2022.2025534.
Zhang, R., P. Hao, X. Zhang, and F. He. 2018. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature. International Journal of Heat and Mass Transfer 122: 395–402. doi: 10.1016/j.ijheatmasstransfer.2018.01.076.
Zhao, H., B. Wang, K. Cui, J. Cao, and W. Jiang. 2019. Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature. Scientia Horticulturae 246 (27): 68–78. doi: 10.1016/j.scienta.2018.10.054.
Zhao, Y., X. Zhang, X. Xu, and S. Zhang. 2020. Research progress in nucleation and supercooling induced by phase change materials. Journal of Energy Storage 27: 101156. doi: 10.1016/j.est.2019.101156.