Wiesweg, M., Preuss, C., Roeper, J., Metzenmacher, M., Eberhardt, W., Stropiep, U., Wedeken, K., Reis, H., Herold, T., Darwiche, K., et al. BRAF mutations and BRAF mutation functional class have no negative impact on the clinical outcome of advanced NSCLC and associate with susceptibility to immunotherapy. Eur. J. Cancer 149 (2021), 211–221, 10.1016/j.ejca.2021.02.036.
Dagogo-Jack, I., Martinez, P., Yeap, B.Y., Ambrogio, C., Ferris, L.A., Lydon, C., Nguyen, T., Jessop, N.A., Iafrate, A.J., Johnson, B.E., et al. Impact of BRAF Mutation Class on Disease Characteristics and Clinical Outcomes in BRAF-mutant Lung Cancer. Clin. Cancer Res. 25 (2019), 158–165, 10.1158/1078-0432.CCR-18-2062.
Tabbo, F., Pisano, C., Mazieres, J., Mezquita, L., Nadal, E., Planchard, D., Pradines, A., Santamaria, D., Swalduz, A., Ambrogio, C., et al. How far we have come targeting BRAF-mutant non-small cell lung cancer (NSCLC). Cancer Treat Rev., 103, 2022, 102335, 10.1016/j.ctrv.2021.102335.
Planchard, D., Besse, B., Groen, H.J.M., Hashemi, S.M.S., Mazieres, J., Kim, T.M., Quoix, E., Souquet, P.J., Barlesi, F., Baik, C., et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 17 (2022), 103–115, 10.1016/j.jtho.2021.08.011.
Facchinetti, F., Lacroix, L., Mezquita, L., Scoazec, J.Y., Loriot, Y., Tselikas, L., Gazzah, A., Rouleau, E., Adam, J., Michiels, S., et al. Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAF(V600E) non-small cell lung cancer. Eur. J. Cancer 132 (2020), 211–223, 10.1016/j.ejca.2020.03.025.
Ortiz-Cuaran, S., Mezquita, L., Swalduz, A., Aldea, M., Mazieres, J., Leonce, C., Jovelet, C., Pradines, A., Avrillon, V., Chumbi Flores, W.R., et al. Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAF-Targeted Therapies in Patients with BRAF-Mutant Metastatic Non-Small Cell Lung Cancer. Clin. Cancer Res. 26 (2020), 6242–6253, 10.1158/1078-0432.CCR-20-1037.
Wang, L., Leite de Oliveira, R., Huijberts, S., Bosdriesz, E., Pencheva, N., Brunen, D., Bosma, A., Song, J.Y., Zevenhoven, J., Los-de Vries, G.T., et al. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell 173 (2018), 1413–1425.e14, 10.1016/j.cell.2018.04.012.
Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34 (2016), 184–191, 10.1038/nbt.3437.
Winter, J., Schwering, M., Pelz, O., Rauscher, B., Zhan, T., Heigwer, F., Boutros, M., CRISPRAnalyzeR: Interactive analysis, annotation and documentation of pooled CRISPR screens. Preprint at bioRxiv, 2017, 109967, 10.1101/109967.
Sanchez-Burgos, L., Navarro-Gonzalez, B., Garcia-Martin, S., Sirozh, O., Mota-Pino, J., Fueyo-Marcos, E., Tejero, H., Anton, M.E., Murga, M., Al-Shahrour, F., Fernandez-Capetillo, O., Activation of the integrated stress response is a vulnerability for multidrug-resistant FBXW7-deficient cells. EMBO Mol. Med., 14, 2022, e15855, 10.15252/emmm.202215855.
Nokin, M.J., Ambrogio, C., Nadal, E., Santamaria, D., Targeting Infrequent Driver Alterations in Non-Small Cell Lung Cancer. Trends Cancer 7 (2021), 410–429, 10.1016/j.trecan.2020.11.005.
Wang, V.E., Xue, J.Y., Frederick, D.T., Cao, Y., Lin, E., Wilson, C., Urisman, A., Carbone, D.P., Flaherty, K.T., Bernards, R., et al. Adaptive Resistance to Dual BRAF/MEK Inhibition in BRAF-Driven Tumors through Autocrine FGFR Pathway Activation. Clin. Cancer Res. 25 (2019), 7202–7217, 10.1158/1078-0432.CCR-18-2779.
Abravanel, D.L., Nishino, M., Sholl, L.M., Ambrogio, C., Awad, M.M., An Acquired NRAS Q61K Mutation in BRAF V600E-Mutant Lung Adenocarcinoma Resistant to Dabrafenib Plus Trametinib. J. Thorac. Oncol. 13 (2018), e131–e133, 10.1016/j.jtho.2018.03.026.
Niemantsverdriet, M., Schuuring, E., Elst, A.T., van der Wekken, A.J., van Kempen, L.C., van den Berg, A., Groen, H.J.M., KRAS Mutation as a Resistance Mechanism to BRAF/MEK Inhibition in NSCLC. J. Thorac. Oncol. 13 (2018), e249–e251, 10.1016/j.jtho.2018.07.103.
Lin, L., Sabnis, A.J., Chan, E., Olivas, V., Cade, L., Pazarentzos, E., Asthana, S., Neel, D., Yan, J.J., Lu, X., et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47 (2015), 250–256, 10.1038/ng.3218.
Hangauer, M.J., Viswanathan, V.S., Ryan, M.J., Bole, D., Eaton, J.K., Matov, A., Galeas, J., Dhruv, H.D., Berens, M.E., Schreiber, S.L., et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551 (2017), 247–250, 10.1038/nature24297.
Viswanathan, V.S., Ryan, M.J., Dhruv, H.D., Gill, S., Eichhoff, O.M., Seashore-Ludlow, B., Kaffenberger, S.D., Eaton, J.K., Shimada, K., Aguirre, A.J., et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547 (2017), 453–457, 10.1038/nature23007.
Sharma, S.V., Lee, D.Y., Li, B., Quinlan, M.P., Takahashi, F., Maheswaran, S., McDermott, U., Azizian, N., Zou, L., Fischbach, M.A., et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141 (2010), 69–80, 10.1016/j.cell.2010.02.027.
Jin, H., Wang, L., Bernards, R., Rational combinations of targeted cancer therapies: background, advances and challenges. Nat. Rev. Drug Discov. 22 (2023), 213–234, 10.1038/s41573-022-00615-z.
Ramirez, M., Rajaram, S., Steininger, R.J., Osipchuk, D., Roth, M.A., Morinishi, L.S., Evans, L., Ji, W., Hsu, C.H., Thurley, K., et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun., 7, 2016, 10690, 10.1038/ncomms10690.
Saleh, T., Gewirtz, D.A., Considering therapy-induced senescence as a mechanism of tumour dormancy contributing to disease recurrence. Br. J. Cancer 126 (2022), 1363–1365, 10.1038/s41416-022-01787-6.
Wang, L., Lankhorst, L., Bernards, R., Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22 (2022), 340–355, 10.1038/s41568-022-00450-9.
Jochems, F., Thijssen, B., De Conti, G., Jansen, R., Pogacar, Z., Groot, K., Wang, L., Schepers, A., Wang, C., Jin, H., et al. The Cancer SENESCopedia: A delineation of cancer cell senescence. Cell Rep., 36, 2021, 109441, 10.1016/j.celrep.2021.109441.
Figarol, S., Delahaye, C., Gence, R., Asslan, R., Pagano, S., Tardy, C., Colinge, J., Villemin, J.-P., Maraver, A., Ferrer, I., et al. Farnesyltransferase inhibition overcomes the adaptive resistance to osimertinib in EGFR-mutant NSCLC. Nat Commun, 15, 2024, 5345, 10.1038/s41467-024-49360-4.
Moosmann, B., Behl, C., Selenoprotein synthesis and side-effects of statins. Lancet 363 (2004), 892–894, 10.1016/S0140-6736(04)15739-5.
Zheng, J., Conrad, M., The Metabolic Underpinnings of Ferroptosis. Cell Metabol. 32 (2020), 920–937, 10.1016/j.cmet.2020.10.011.
Xue, Y., Martelotto, L., Baslan, T., Vides, A., Solomon, M., Mai, T.T., Chaudhary, N., Riely, G.J., Li, B.T., Scott, K., et al. An approach to suppress the evolution of resistance in BRAF(V600E)-mutant cancer. Nat. Med. 23 (2017), 929–937, 10.1038/nm.4369.
Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45 (2009), 228–247, 10.1016/j.ejca.2008.10.026.
Lim, J.K.M., Delaidelli, A., Minaker, S.W., Zhang, H.F., Colovic, M., Yang, H., Negri, G.L., von Karstedt, S., Lockwood, W.W., Schaffer, P., et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. USA 116 (2019), 9433–9442, 10.1073/pnas.1821323116.
Johnson, D.B., Menzies, A.M., Zimmer, L., Eroglu, Z., Ye, F., Zhao, S., Rizos, H., Sucker, A., Scolyer, R.A., Gutzmer, R., et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer 51 (2015), 2792–2799, 10.1016/j.ejca.2015.08.022.
Mikubo, M., Inoue, Y., Liu, G., Tsao, M.S., Mechanism of Drug Tolerant Persister Cancer Cells: The Landscape and Clinical Implication for Therapy. J. Thorac. Oncol. 16 (2021), 1798–1809, 10.1016/j.jtho.2021.07.017.
Raha, D., Wilson, T.R., Peng, J., Peterson, D., Yue, P., Evangelista, M., Wilson, C., Merchant, M., Settleman, J., The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res. 74 (2014), 3579–3590, 10.1158/0008-5472.CAN-13-3456.
Dhimolea, E., de Matos Simoes, R., Kansara, D., Al'Khafaji, A., Bouyssou, J., Weng, X., Sharma, S., Raja, J., Awate, P., Shirasaki, R., et al. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. Cancer Cell 39 (2021), 240–256.e11, 10.1016/j.ccell.2020.12.002.
Oren, Y., Tsabar, M., Cuoco, M.S., Amir-Zilberstein, L., Cabanos, H.F., Hutter, J.C., Hu, B., Thakore, P.I., Tabaka, M., Fulco, C.P., et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596 (2021), 576–582, 10.1038/s41586-021-03796-6.
Sahu, N., Stephan, J.P., Cruz, D.D., Merchant, M., Haley, B., Bourgon, R., Classon, M., Settleman, J., Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs. Nat. Commun., 7, 2016, 12351, 10.1038/ncomms12351.
Zhang, Z., Qin, S., Chen, Y., Zhou, L., Yang, M., Tang, Y., Zuo, J., Zhang, J., Mizokami, A., Nice, E.C., et al. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol. Med., 14, 2022, e14903, 10.15252/emmm.202114903.
Shen, S., Faouzi, S., Souquere, S., Roy, S., Routier, E., Libenciuc, C., Andre, F., Pierron, G., Scoazec, J.Y., Robert, C., Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation. Cell Rep., 33, 2020, 108421, 10.1016/j.celrep.2020.108421.
Hong, X., Roh, W., Sullivan, R.J., Wong, K.H.K., Wittner, B.S., Guo, H., Dubash, T.D., Sade-Feldman, M., Wesley, B., Horwitz, E., et al. The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discov. 11 (2021), 678–695, 10.1158/2159-8290.CD-19-1500.
Aloia, A., Mullhaupt, D., Chabbert, C.D., Eberhart, T., Fluckiger-Mangual, S., Vukolic, A., Eichhoff, O., Irmisch, A., Alexander, L.T., Scibona, E., et al. A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of BRAF-mutated Melanoma to MAPK Inhibitors. Clin. Cancer Res. 25 (2019), 6852–6867, 10.1158/1078-0432.CCR-19-0253.
Zhang, G., Frederick, D.T., Wu, L., Wei, Z., Krepler, C., Srinivasan, S., Chae, Y.C., Xu, X., Choi, H., Dimwamwa, E., et al. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J. Clin. Invest. 126 (2016), 1834–1856, 10.1172/JCI82661.
Chang, M.T., Tsai, L.C., Nakagawa-Goto, K., Lee, K.H., Shyur, L.F., Phyto-sesquiterpene lactones DET and DETD-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via GPX4 inhibition and metabolic reprogramming. Pharmacol. Res., 178, 2022, 106148, 10.1016/j.phrs.2022.106148.
Dudnik, E., Peled, N., Nechushtan, H., Wollner, M., Onn, A., Agbarya, A., Moskovitz, M., Keren, S., Popovits-Hadari, N., Urban, D., et al. BRAF Mutant Lung Cancer: Programmed Death Ligand 1 Expression, Tumor Mutational Burden, Microsatellite Instability Status, and Response to Immune Check-Point Inhibitors. J. Thorac. Oncol. 13 (2018), 1128–1137, 10.1016/j.jtho.2018.04.024.
Alvarez, S.W., Sviderskiy, V.O., Terzi, E.M., Papagiannakopoulos, T., Moreira, A.L., Adams, S., Sabatini, D.M., Birsoy, K., Possemato, R., NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551 (2017), 639–643, 10.1038/nature24637.
Terzi, E.M., Sviderskiy, V.O., Alvarez, S.W., Whiten, G.C., Possemato, R., Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci. Adv., 7, 2021, eabg4302, 10.1126/sciadv.abg4302.
Hu, K., Li, K., Lv, J., Feng, J., Chen, J., Wu, H., Cheng, F., Jiang, W., Wang, J., Pei, H., et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J. Clin. Invest. 130 (2020), 1752–1766, 10.1172/JCI124049.
Muller, F., Lim, J.K.M., Bebber, C.M., Seidel, E., Tishina, S., Dahlhaus, A., Stroh, J., Beck, J., Yapici, F.I., Nakayama, K., et al. Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation. Cell Death Differ. 30 (2022), 442–456, 10.1038/s41418-022-01096-8.
Chen, M., Mainardi, S., Lieftink, C., Velds, A., de Rink, I., Yang, C., Kuiken, H.J., Morris, B., Edwards, F., Jochems, F., et al. Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse. Cell Rep. Med., 5, 2024, 101471, 10.1016/j.xcrm.2024.101471.
Madorsky Rowdo, F.P., Baron, A., Gallagher, S.J., Hersey, P., Emran, A.A., Von Euw, E.M., Barrio, M.M., Mordoh, J., Epigenetic inhibitors eliminate senescent melanoma BRAFV600E cells that survive long-term BRAF inhibition. Int. J. Oncol. 56 (2020), 1429–1441, 10.3892/ijo.2020.5031.
Maertens, O., Kuzmickas, R., Manchester, H.E., Emerson, C.E., Gavin, A.G., Guild, C.J., Wong, T.C., De Raedt, T., Bowman-Colin, C., Hatchi, E., et al. MAPK Pathway Suppression Unmasks Latent DNA Repair Defects and Confers a Chemical Synthetic Vulnerability in BRAF-NRAS-and NF1-Mutant Melanomas. Cancer Discov. 9 (2019), 526–545, 10.1158/2159-8290.CD-18-0879.
Jonas, O., Oudin, M.J., Kosciuk, T., Whitman, M., Gertler, F.B., Cima, M.J., Flaherty, K.T., Langer, R., Parallel In Vivo Assessment of Drug Phenotypes at Various Time Points during Systemic BRAF Inhibition Reveals Tumor Adaptation and Altered Treatment Vulnerabilities. Clin. Cancer Res. 22 (2016), 6031–6038, 10.1158/1078-0432.CCR-15-2722.
Huijberts, S., Wang, L., de Oliveira, R.L., Rosing, H., Nuijen, B., Beijnen, J., Bernards, R., Schellens, J., Wilgenhof, S., Vorinostat in patients with resistant BRAFV600E mutated advanced melanoma: a proof of concept study. Future Oncol. 16 (2020), 619–629, 10.2217/fon-2020-0023.
Embaby, A., Huijberts, S., Wang, L., Leite de Oliveira, R., Rosing, H., Nuijen, B., Sanders, J., Hofland, I., van Steenis, C., Kluin, R.J.C., et al. A proof-of-concept study of sequential treatment with the HDAC inhibitor vorinostat following BRAF and MEK inhibitors in BRAFV600mutated melanoma. Clin. Cancer Res., 2024, 10.1158/1078-0432.CCR-23-3171.
Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (2014), 2114–2120, 10.1093/bioinformatics/btu170.
Li, B., Dewey, C.N., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf., 12, 2011, 323, 10.1186/1471-2105-12-323.
Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M.N., Sergushichev, A., Fast gene set enrichment analysis. Preprint at bioRxiv, 2021, 060012, 10.1101/060012.
Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P., Tamayo, P., The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1 (2015), 417–425, 10.1016/j.cels.2015.12.004.
Hanzelmann, S., Castelo, R., Guinney, J., GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf., 14, 2013, 7, 10.1186/1471-2105-14-7.
Nokin, M.J., Darbo, E., Travert, C., Drogat, B., Lacouture, A., San Jose, S., Cabrera, N., Turcq, B., Prouzet-Mauleon, V., Falcone, M., et al. Inhibition of DDR1 enhances in vivo chemosensitivity in KRAS-mutant lung adenocarcinoma. JCI insight, 5, 2020, e137869, 10.1172/jci.insight.137869.