Article (Scientific journals)
Grasping under Uncertainties: Sequential Neural Ratio Estimation for 6-DoF Robotic Grasping
Marlier, Norman; Bruls, Olivier; Louppe, Gilles
2024In IEEE Robotics and Automation Letters, p. 1-8
Peer Reviewed verified by ORBi
 

Files


Full Text
Grasping_under_Uncertainties_Sequential_Neural_Ratio_Estimation_for_6-DoF_Robotic_Grasping.pdf
Author preprint (10.5 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] We introduce a novel approach to 6-DoF robotic grasping based on simulation-based inference. Our approach combines sequential neural ratio estimation with a neural implicit representation for the Bayesian inference of hand configurations in cluttered environments. We propose to compute the maximum a posteriori by gradient descent, more specifically using Riemannian gradient descent, to preserve the geometry of the rotation space and capitalize on the full differentiability of our model. We demonstrate the capabilities of our approach on a grasping benchmark both in simulation and on a real robot. Our performance generalizes well across different scenarios, achieving high success rates.
Disciplines :
Computer science
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Marlier, Norman  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science ; Faculty of Applied Science, University of Liè,ge, Belgium
Bruls, Olivier  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques ; Faculty of Applied Science, University of Liè,ge, Belgium
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data ; Faculty of Applied Science, University of Liè,ge, Belgium
Language :
English
Title :
Grasping under Uncertainties: Sequential Neural Ratio Estimation for 6-DoF Robotic Grasping
Publication date :
19 June 2024
Journal title :
IEEE Robotics and Automation Letters
eISSN :
2377-3766
Publisher :
Institute of Electrical and Electronics Engineers (IEEE)
Pages :
1-8
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fund for Research Training in Industry and Agriculture
Available on ORBi :
since 20 June 2024

Statistics


Number of views
26 (3 by ULiège)
Number of downloads
5 (2 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi