extraction r mass spectrometry r metabolomics r Trypanosoma brucei Fall; F.; Desmet; L.; Mamede; Schioppa; de Tullio; P.; Frédérich; M.; Govaerts; B.; & Quetin-Leclercq; J. (2024). Comparison of three widely employed extraction methods for metabolomic analysis of Trypanosoma brucei. Current Protocols; 4
Abstract :
[en] Trypanosoma brucei (Tb) is the causative agent of human African trypanosomiasis (HAT), also known as sleeping sickness, which can be fatal if left untreated. An understanding of the parasite's cellular metabolism is vital for the discovery of new antitrypanosomal drugs and for disease eradication. Metabolomics can be used to analyze numerous metabolic pathways described as essential to Tb. brucei but has some limitations linked to the metabolites' physicochemical properties and the extraction process. To develop an optimized method for extracting and analyzing Tb. brucei metabolites, we tested the three most commonly used extraction methods, analyzed the extracts by hydrophilic interaction liquid chromatography high-resolution mass spectrometry (HILIC LC-HRMS), and further evaluated the results using quantitative criteria including the number, intensity, reproducibility, and variability of features, as well as qualitative criteria such as the specific coverage of relevant metabolites. Here, we present the resulting protocols for untargeted metabolomic analysis of Tb. brucei using (HILIC LC-HRMS).
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Fall, Fanta; Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
Desmet, Lieven; Institute of Statistics, Biostatistics and Actuarial Sciences, ISBA/LIDAM), UCLouvain, Louvain-la-Neuve, Belgium
Mamede, Lúcia; Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), Center for Interdisciplinary Research on Medicines (CIRM), University of Liège ; University of Liège, Belgium
Schioppa, Laura; Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
De Tullio, Pascal ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Frederich, Michel ; Université de Liège - ULiège > Département de pharmacie > Pharmacognosie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Govaerts, Bernadette; Institute of Statistics, Biostatistics and Actuarial Sciences, ISBA/LIDAM), UCLouvain, Louvain-la-Neuve, Belgium
Quetin-Leclercq, Joëlle; Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
Language :
English
Title :
Comparison of Three Widely Employed Extraction Methods for Metabolomic Analysis of Trypanosoma brucei
Adusumilli, R., & Mallick, P. (2017). Data conversion with ProteoWizard msConvert. Methods in Molecular Biology, 1550, 339–368. https://doi.org/10.1007/978-1-4939-6747-6_23
Amiar, S., Katris, N. J., Berry, L., Dass, S., Duley, S., Arnold, C. S., Shears, M. J., Brunet, C., Touquet, B., McFadden, G. I., Yamaryo-Botté, Y., & Botté, C. Y. (2020). Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Reports, 30(11), 3778–3792. e9. https://doi.org/10.1016/j.celrep.2020.02.072
Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., & Westerhoff, H. V. (1999). What controls glycolysis in bloodstream form Trypanosoma brucei? Journal of Biological Chemistry, 274(21), 14551–14559. https://doi.org/10.1074/jbc.274.21.14551
Bi, H., Krausz, K. W., Manna, S. K., Li, F., Johnson, C. H., & Gonzalez, F. J. (2013). Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Analytical and Bioanalytical Chemistry, 405(15), 5279–5289. https://doi.org/10.1007/s00216-013-6927-9
Breil, C., Abert Vian, M., Zemb, T., Kunz, W., & Chemat, F. (2017). “Bligh and Dyer” and Folch Methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences, 18(4), 708. https://doi.org/10.3390/ijms18040708
Brun, R., Blum, J., Chappuis, F., & Burri, C. (2010). Human African trypanosomiasis. The Lancet, 375(9709), 148–159. https://doi.org/10.1016/S0140-6736(09)60829-1
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46(W1), W486–W494. https://doi.org/10.1093/nar/gky310
Creek, D. J., Mazet, M., Achcar, F., Anderson, J., Kim, D. H., Kamour, R., Morand, P., Millerioux, Y., Biran, M., Kerkhoven, E. J., Chokkathukalam, A., Weidt, S. K., Burgess, K. E., Breitling, R., Watson, D. G., Bringaud, F., & Barrett, M. P. (2015). Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathogens, 11(3), e1004689. https://doi.org/10.1371/journal.ppat.1004689
Cubbon, S., Antonio, C., Wilson, J., & Thomas-Oates, J. (2010). Metabolomic applications of HILIC–LC–MS. Mass Spectrometry Reviews, 29(5), 671–684. https://doi.org/10.1002/mas.20252
Fall, F., Mamede, L., Schioppa, L., Ledoux, A., de Tullio, P., Michels, P., Frédérich, M., & Quetin-Leclercq, J. (2022). Trypanosoma brucei: Metabolomics for analysis of cellular metabolism and drug discovery. Metabolomics, 18(4), 20. https://doi.org/10.1007/s11306-022-01880-0
Giacomoni, F., le Corguillé, G., Monsoor, M., Landi, M., Pericard, P., Pétéra, M., Duperier, C., Tremblay-Franco, M., Martin, J. F., Jacob, D., Goulitquer, S., Thévenot, E. A., & Caron, C. (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics, 31(9), 1493–1495. https://doi.org/10.1093/bioinformatics/btu813
Hannaert, V. (2011). Sleeping sickness pathogen (Trypanosoma brucei) and natural products: Therapeutic targets and screening systems. Planta Medica, 77(6), 586–597. https://doi.org/10.1055/s-0030-1250411
Hirumi, H., & Hirumi, K. (1994). Axenic culture of African trypanosome bloodstream forms. Parasitology Today, 10(2), 80–84. https://doi.org/10.1016/0169-4758(94)90402-2
Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews. Molecular Cell Biology, 17(7), 451–459. https://doi.org/10.1038/nrm.2016.25
Johnston, K., Kim, D.-H., Kerkhoven, E. J., Burchmore, R., Barrett, M. P., & Achcar, F. (2019). Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U-13C-labelled substrates and LC–MS. Bioscience Reports, 39(5), BSR20181601. https://doi.org/10.1042/BSR20181601
Kafsack, B. F. C., & Llinás, M. (2010). Eating at the table of another: Metabolomics of host/parasite interactions. Cell Host & Microbe, 7(2), 90–99. https://doi.org/10.1016/j.chom.2010.01.008
Kamleh, A., Barrett, M. P., Wildridge, D., Burchmore, R. J. S., Scheltema, R. A., & Watson, D. G. (2008). Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: A method with wide applicability to analysis of biomolecules. Rapid Communications in Mass Spectrometry: RCM, 22(12), 1912–1918. https://doi.org/10.1002/rcm.3564
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30.
Madji Hounoum, B., Blasco, H., Emond, P., & Mavel, S. (2016). Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. TrAC Trends in Analytical Chemistry, 75, 118–128. https://doi.org/10.1016/j.trac.2015.08.003
Mamede, L., Fall, F., Schoumacher, M., Ledoux, A., de Tullio, P., Quetin-Leclercq, J., & Frédérich, M. (2022). Recent metabolomic developments for antimalarial drug discovery. Parasitology Research, 121(12), 3351–3380. https://doi.org/10.1007/s00436-022-07673-7
Martin, A. C., Pawlus, A. D., Jewett, E. M., Wyse, D. L., Angerhofer, C. K., & Hegeman, A. D. (2014). Evaluating solvent extraction systems using metabolomics approaches. RSC Advances, 4(50), 26325–26334. https://doi.org/10.1039/C4RA02731K
Matthews, K. R. (2005). The developmental cell biology of Trypanosoma brucei. Journal of Cell Science, 118(2), 283–290. https://doi.org/10.1242/jcs.01649
Pineda, E., Thonnus, M., Mazet, M., Mourier, A., Cahoreau, E., Kulyk, H., Dupuy, J. W., Biran, M., Masante, C., Allmann, S., Rivière, L., Rotureau, B., Portais, J. C., & Bringaud, F. (2018). Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. PLOS Pathogens, 14(11), e1007412. https://doi.org/10.1371/journal.ppat.1007412
Pinu, F. R., Villas-Boas, S. G., & Aggio, R. (2017). Analysis of intracellular metabolites from microorganisms: Quenching and extraction protocols. Metabolites, 7(4), 53. https://doi.org/10.3390/metabo7040053
R: The R Project for Statistical Computing. (n.d.). https://www.r-project.org/
Rey-Stolle, F., Dudzik, D., Gonzalez-Riano, C., Fernández-García, M., Alonso-Herranz, V., Rojo, D., Barbas, C., & García, A. (2022). Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial. Analytica Chimica Acta, 1210, 339043. https://doi.org/10.1016/j.aca.2021.339043
Richmond, G. S., Gibellini, F., Young, S. A., Major, L., Denton, H., Lilley, A., & Smith, T. K. (2010). Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology, 137(9), 1357–1392. https://doi.org/10.1017/S0031182010000715
Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. https://doi.org/10.1021/ac051437y
Smith, T. K., Bringaud, F., Nolan, D. P., & Figueiredo, L. M. (2017). Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Research, 6, 683. https://doi.org/10.12688/f1000research.10342.2
Song, X., Yang, X., Ying, Z., Wu, K., Liu, J., & Liu, Q. (2023). Regulation of mitochondrial energy metabolism by glutaredoxin 5 in the apicomplexan parasite Neospora caninum. Microbiology Spectrum, 11(1), e0309122. https://doi.org/10.1128/spectrum.03091-22
t'Kindt, R., Jankevics, A., Scheltema, R. A., Zheng, L., Watson, D. G., Dujardin, J. C., Breitling, R., Coombs, G. H., & Decuypere, S. (2010). Towards an unbiased metabolic profiling of protozoan parasites: Optimisation of a Leishmania sampling protocol for HILIC-Orbitrap analysis. Analytical and Bioanalytical Chemistry, 398(5), 2059–2069. https://doi.org/10.1007/s00216-010-4139-0
Tang, D.-Q., Zou, L., Yin, X.-X., & Ong, C. N. (2016). HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrometry Reviews, 35(5), 574–600. https://doi.org/10.1002/mas.21445
Thiel, M., Benaiche, N., Martin, M., Franceschini, S., van Oirbeek, R., & Govaerts, B. (2023). limpca: An R package for the linear modeling of high-dimensional designed data based on ASCA/APCA family of methods. Journal of Chemometrics, 37(7), e3482. https://doi.org/10.1002/cem.3482
Thiel, M., Féraud, B., & Govaerts, B. (2017). ASCA+ and APCA+: Extensions of ASCA and APCA in the analysis of unbalanced multifactorial designs: Analyzing unbalanced multifactorial designs with ASCA+ and APCA+. Journal of Chemometrics, 31(6), e2895. https://doi.org/10.1002/cem.2895
Vertommen, D., van Roy, J., Szikora, J.-P., Rider, M. H., Michels, P. A. M., & Opperdoes, F. R. (2008). Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Molecular and Biochemical Parasitology, 158(2), 189–201. https://doi.org/10.1016/j.molbiopara.2007.12.008
Villafraz, O., Biran, M., Pineda, E., Plazolles, N., Cahoreau, E., Ornitz Oliveira Souza, R., Thonnus, M., Allmann, S., Tetaud, E., Rivière, L., Silber, A. M., Barrett, M. P., Zíková, A., Boshart, M., Portais, J. C., & Bringaud, F. (2021). Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline. PLOS Pathogens, 17(3), e1009204. https://doi.org/10.1371/journal.ppat.1009204
Vincent, I. M., & Barrett, M. P. (2015). Metabolomic-based strategies for anti-parasite drug discovery. Journal of Biomolecular Screening, 20(1), 44–55. https://doi.org/10.1177/1087057114551519
Wang, S., Blair, I. A., & Mesaros, C. (2019). Analytical methods for mass spectrometry-based metabolomics studies. Advances in Experimental Medicine and Biology, 1140, 635–647. https://doi.org/10.1007/978-3-030-15950-4_38
World Health Organization. (n.d.). Human African trypanosomiasis (sleeping sickness). World Health Organization. http://www.who.int/trypanosomiasis_african/en/
Zoltner, M., Campagnaro, G. D., Taleva, G., Burrell, A., Cerone, M., Leung, K. F., Achcar, F., Horn, D., Vaughan, S., Gadelha, C., Zíková, A., Barrett, M. P., de Koning, H. P., & Field, M. C. (2020). Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. Journal of Biological Chemistry, 295(24), 8331–8347. https://doi.org/10.1074/jbc.RA120.012355